Math 546, Exam 2, Summer, 1993
Use your own paper. Each problem is worth 10 points.

1. Let $\sigma=(1,2,3)(4,5,6)$ and $\tau=(3,4,5)$ be elements of S_{6}. Write $\tau \sigma \tau^{-1}$ as the product of disjoint cycles.
2. Let H be a subgroup of S_{n} for some $n \geq 2$. Prove that either every permutation in H is even or exactly half of the permutations in H are even.
3. Let H be a subgroup of the group G. Let a be a fixed element of G and let

$$
K=\left\{a h a^{-1} \mid h \in H\right\} .
$$

Prove that K is a subgroup of G.
4. Let A be a set, B be a subset of A, and b be an element of B. Is

$$
\left\{\sigma \in S_{A} \mid \sigma(b) \in B\right\}
$$

always a subgroup of S_{A} ? If your answer is yes, then PROVE the statement. If your answer is no, then give a COUNTEREXAMPLE.
5. Let A be a set and b be an element of A. Is

$$
\left\{\sigma \in S_{A} \mid \sigma(b)=b\right\}
$$

always a subgroup of S_{A} ? If your answer is yes, then PROVE the statement. If your answer is no, then give a COUNTEREXAMPLE.

