6. (6 points) TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) If G is a group and $H = \{x^3 \mid x \in G\}$, then H is a subgroup of G.

False

Take $G = D_3$. Then $H = \{1, \sigma, \sigma^2 \}$ and this isn't a group because it isn't closed since $\sigma \cdot \sigma^2 = \rho \notin H$.

7. (5 points) Find the inverse of $[37]_{83}$ in $(\mathbb{Z}_{83}^\times, \cdot)$.

$$37 = 2 \cdot 37 + 9$$

$$37 = 4 \cdot 9 + 1$$

So $1 = 37 - 4 \cdot 9$

$$1 = 37 - 4(83 - 2 \cdot 37)$$

$$1 = 9 \cdot 37 - 4 \cdot 83$$

So $9 \cdot 37 \equiv 1 \pmod{83}$

And $[9]_{83}$ is the inverse of $[37]_{83}$ in \mathbb{Z}_{83}^\times.

4