1. (5 points) Define “centralizer”. Use complete sentences.

The centralizer of the element \(a \) in the group \(G \) is the set of all elements in \(G \) which commute with \(a \).

2. (5 points) Define “normal subgroup”. Use complete sentences.

The subgroup \(N \) of the group \(G \) is a normal subgroup if \(gng^{-1} \in N \) for all \(n \in N \) and all \(g \in G \).

3. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let \(a \) and \(b \) be elements of finite order in the group \(G \). Does \(ab \) have to have finite order?

NO. Let \(G \) be the group of rigid motions of the \(xy \) plane, \(\sigma \) be reflection across the \(x \)-axis, and \(\rho \) be rotation by \(\theta = \frac{2\pi}{\sqrt{2}} \) radians. Let \(a = \sigma \) and \(b = \sigma \rho \). It is clear that \(a \) has order 2. It is not hard to see that \(b \) is reflection across the line through the origin which makes the angle \(\frac{-\theta}{2} \) with the positive \(x \)-axis; thus, \(b \) also has order 2. On the other hand, \(ab = \rho \), which has infinite order; because, if \(\rho^m \) were equal to the identity for some positive integer \(m \), then \(m\theta = \frac{2m\pi}{\sqrt{2}} \) would equal an integer multiple of \(2\pi \) and \(\sqrt{2} \) would be a rational number.

4. (6 points) Recall that each element of \(\mathbb{C} \) is a point on the complex plane. Notice that \((\mathbb{R}^{\text{pos}}, \times) \) is a subgroup of \((\mathbb{C} \setminus \{0\}, \times) \). Give a geometric description of the left cosets of \((\mathbb{R}^{\text{pos}}, \times) \) in \((\mathbb{C} \setminus \{0\}, \times) \).

The left cosets of \((\mathbb{R}^{\text{pos}}, \times) \) in \((\mathbb{C} \setminus \{0\}, \times) \) are the open rays emanating from the origin. Indeed, the left coset determined by \(e^{i\theta} \) is the ray which forms the angle \(\theta \) with the positive \(x \)-axis.

5. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let \(a \) be a fixed element of the group \(G \). Consider the function \(\rho_a : G \to G \), which is given by \(\rho_a(g) = ga \), for all \(g \) in \(G \). Is \(\rho_a \) onto?

YES. Take an arbitrary element \(g \) in \(G \). We see that \(ga^{-1} \in G \) with \(\rho_a(ga^{-1}) = g \).
6. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let a be a fixed element of the group G. Consider the function $\rho_a : G \rightarrow G$, which is given by $\rho_a(g) = ga$, for all g in G. Is ρ_a a homomorphism?

NO! Let G be $(\mathbb{R}^{\text{pos}}, \times)$ and $a = 2$. We see that $\rho_2(1 \cdot 1) = \rho_2(1) = 2$. On the other hand, $\rho_2(1) \cdot \rho_2(1) = 2 \cdot 2 = 4 \neq 2$.

7. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi : \mathbb{Z}_{10} \rightarrow \mathbb{Z}_5$, which is given by $\varphi([n]_{10}) = [n]_5$, a function?

YES! If $[n]_{10} = [m]_{10}$, then 10 divides into $n - m$ evenly, so 5 also divides into $n - m$ evenly and $[n]_5 = [m]_5$.

8. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi : \mathbb{Z}_5 \rightarrow \mathbb{Z}_{10}$, which is given by $\varphi([n]_5) = [n]_{10}$, a function?

NO! Observe that $[0]_5 = [5]_5$, but $[0]_{10} \neq [5]_{10}$.

9. (6 points) Let N be a normal subgroup of the group G, and let G/N be the set of left cosets of N in G. Prove that $\varphi : G/N \rightarrow G/N$, which is given by

$$\varphi(aN, bN) = abN,$$

is a function.

If $aN = a'N$ and $bN = b'N$, then $a = a'n_1$ and $b = b'n_2$ for some n_1 and n_2 in N. We see that

$$ab = a'n_1b'n_2 = a'b'[(b')^{-1}n_1b']n_2 \in a'b'N,$$

since $(b')^{-1}n_1b'$ is an element of the normal subgroup N. It follows that $abN = a'b'N$.

10. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $f : \mathbb{Z} \rightarrow \mathbb{Z}$ be a one-to-one and onto function. Suppose $B \subseteq \mathbb{Z}$ with $f(B) \subseteq B$. Is $f(B) = B$?

Let B be the set of positive integers. Notice that the function $f : \mathbb{Z} \rightarrow \mathbb{Z}$, which is given by $f(n) = n + 1$, is a one-to-one and onto function which carries each element of B to another element of B. However, $f(B)$ is a proper subset of B, because $1 \in B$ and $f(b) \neq 1$ for any $b \in B$.

11. (6 points) What is the order of $([2]_{6}, [2]_{4}) + <([3]_{6}, [2]_{4}) >$ in $\mathbb{Z}_6 \times \mathbb{Z}_4$? Explain.

Let x be the element $([2]_{6}, [2]_{4}) + <([3]_{6}, [2]_{4}) >$ of the group $G = \mathbb{Z}_6 \times \mathbb{Z}_4$. We show that x has order 6 in G. We make our calculation in $\mathbb{Z}_6 \times \mathbb{Z}_4$. Let N be the subgroup

$$<([3]_{6}, [2]_{4}) > = \{([3]_{6}, [2]_{4}), ([0]_{6}, [0]_{4})\}$$
of $\mathbb{Z}_6 \times \mathbb{Z}_4$ and let a be the element $([2]_6, [2]_4)$ of $\mathbb{Z}_6 \times \mathbb{Z}_4$. We show that the least positive integer n, with $a + \cdots + a = n$ in N is 6. Notice that none of the elements
\[a = ([2]_6, [2]_4), \quad a + a = ([4]_6, [0]_4), \]
\[a + a + a = ([0]_6, [2]_4), \quad a + a + a + a = ([2]_6, [0]_4), \quad a + a + a + a + a = ([4]_6, [2]_4) \]
is in N; but
\[a + a + a + a + a = ([0]_6, [0]_4) \]
and this is in N.

12. (6 points) Let H be a non-zero subgroup of \mathbb{Z}. Prove that H is cyclic.

The subgroup H contains some element in addition to zero. Either this element or its inverse is positive. Let h_0 be the least positive element of H. We will show that $H = h_0\mathbb{Z}$. It is clear that $h_0\mathbb{Z} \subset H$. We complete the proof by showing that $H \subset h_0\mathbb{Z}$. Let h be an arbitrary element of H. Divide h_0 into h in order to obtain integers n and r with $h = nh_0 + r$ with $0 \leq r < h_0$. We see that $r = h - nh_0$ is in H. The choice of h_0 (as the least positive element of H) forces r to be zero. Thus, $h \in h_0\mathbb{Z}$ and the proof is complete.

13. (6 points) Let d be the greatest common divisor of the integers n and m. Prove that there exist integers r and s with $rn + sm = d$.

Let $H = \{rn + sm \mid r, s \in \mathbb{Z}\}$. It is clear that H is a subgroup of \mathbb{Z}; hence, by the previous problem, H is cyclic and generated by some positive integer h_0. We will show that $h_0 = d$. Well, n and m are in H; so, h_0 is a common divisor of n and m. But, d is the greatest common divisor of n and m; hence, $h_0 \leq d$. On the other hand, $h_0 \in H$; so, $h_0 = rn + sm$ for some integers r and s. We know that d divides n and m; so, d divides h_0. It follows that $d \leq h_0$. Therefore, d must equal h_0.

14. (6 points) List 6 subgroups of the Dihedral group D_4. No explanation is needed.

Some of the subgroups of D_4 are:
\[D_4, \quad \{\text{id}\}, \quad \{\text{id}, \sigma, \sigma \rho^2, \rho^2\}, \quad \{\rho^2, \text{id}\}, \quad \{\sigma, \text{id}\}, \quad \{\sigma \rho, \text{id}\}, \quad \{\sigma \rho^2, \text{id}\}. \]

15. (6 points) Prove that $(\mathbb{R}, +)$ is isomorphic to $(\mathbb{R}_{\text{pos}}, \times)$.

Define $\varphi : (\mathbb{R}, +) \to (\mathbb{R}_{\text{pos}}, \times)$ by $\varphi(r) = e^r$. We see that φ is a homomorphism because, if $r, s \in \mathbb{R}$, then
\[\varphi(r + s) = e^{r+s} = e^r e^s = \varphi(r)\varphi(s). \]

We see that φ is onto. Let t be a positive real number. It follows that $\ln t$ is a real number with $\varphi(\ln t) = e^{\ln t} = t$. We see that φ is one-to-one. If r and s are real numbers with $\varphi(r) = \varphi(s)$, then $e^r = e^s$. Apply \ln to both sides to see that $r = s$.
16. (6 points) Consider \((\mathbb{Z}, *)\), where \(n * m = n + m + 1\) for all integers \(n\) and \(m\). Is \((\mathbb{Z}, *)\) a group? Explain.

YES.

Closure: If \(n\) and \(m\) are in \(\mathbb{Z}\), then \(n * m = n + m + 1\) is also in \(\mathbb{Z}\).

Identity: We see that \(-1\) is the identity element because \((-1) * a = -1 + a + 1 = a\) for all \(a\) in \(\mathbb{Z}\).

Inverses: If \(a\) is in \(\mathbb{Z}\), then the inverse of \(a\) is \(-a - 2\) because \(a * (-a - 2) = a + (-a - 2) + 1 = -1\), which is the identity element.

Associativity: If \(a\), \(b\), and \(c\) are in \(\mathbb{Z}\), then

\[
a * (b * c) = a * (b + c + 1) = a + (b + c + 1) + 1 = a + b + c + 2
\]

and

\[
(a * b) * c = (a * b) * c = (a + b + 1) * c = (a + b + 1) + c + 1 = a + b + c + 2.
\]

These values are equal; therefore, associativity holds.

17. (6 points) \(S\) be a set and let \(B\) be a subset of \(S\). Define

\[H = \{\sigma \in \text{Sym}(S) \mid \sigma(b) \in B \text{ for all } b \in B\}.\]

Suppose \(S = \{1, 2, 3, 4, 5, 6\}\) and \(B = \{1, 3, 5\}\). How many elements does \(H\) have? Explain.

If \(\sigma\) is in \(H\), then \(\sigma = \sigma' \sigma''\), where \(\sigma'\) is a permutation of \(\{2, 4, 6\}\) and \(\sigma''\) is a permutation of \(\{1, 2, 3\}\). There are 6 choices for \(\sigma'\) and there are 6 choices for \(\sigma''\). Thus, the group \(H\) has 36 elements.