7. Let \(Z \) be the group of integers under addition and let \(H \) be the subgroup of even integers. Are the groups \(Z \) and \(H \) isomorphic? Explain your answer.

\[\text{(Yes) Both groups are infinite and cyclic, \((H \) is generated by 2. We know that every infinite cyclic group is isomorphic to \(Z \).) } \]

8. Are the groups \(Z_{15} \) and \(Z_3 \times Z_5 \) isomorphic? (The operation in each of the groups \(Z_{15} \), \(Z_3 \), and \(Z_5 \) is addition.) Explain your answer.

\[\text{(Yes) \(Z_3 \times Z_5 \) is a cyclic group of order 15. We fixed that every cyclic group of order 15 is isomorphic to \(Z_{15} \).} \]

\(\text{The group } Z_3 \times Z_5 \text{ is generated by } (1,1). \text{ We see that } \]
\[10(1,1) = (10,0) \text{ and } 6(1,1) = (0,1). \text{ So } (a,b) = a(1,0) + b(0,1) = 10a(1,1) + 6b(1,1) = (10a + 6b)(1,1). \]