7. True or False (If true, then prove it. If false, then give a counterexample.) If every proper subgroup of the group G is abelian, then G is abelian. (Recall that a subgroup H is a proper subgroup if $H \neq G$.)

False. The easiest counterexample is D_3 which has six elements $1, \rho, \rho^2, \sigma, \sigma \rho, \sigma \rho^2$ where ρ is rotation by 120°, σ is reflection across the x-axis.

$\rho \sigma = \sigma \rho^2$ so D_3 is not abelian.

But every subgroup of D_3 has order 1, 2, or 3 by Lagrange's theorem and every group of order 1, 2, or 3 is cyclic, hence abelian.