3. Let G be a group and $a \in G$.
 (a) Define "the centralizer of $a".

 The centralizer of the element a in the group G is the set of all elements in G which commute with a.

 (b) Prove that the centralizer of a is a subgroup of G.

 Closest Take x and y in the centralizer of a. So $xa = ax$ and $ya = ay$. We now show that $xy \in$ in centralizer of a. Well $(xy)a = x(ya) = x(ay) = (xa)y = (Gx)y = g(xy)$. Thus $xy \in C(a)$.

 (c) Let $G = D_4$ and $a = p$. Find the centralizer of a.

 It is clear that id, p, p^2 and p^3 all commute with p. So all 4 of these elements are in the centralizer of a. The centralizer of p is a subgroup of D_4, so Lagrange's says that it and divides 8, so the centralizer of p has either 4 or 8 elements. On the other hand $pq = 5p^3 \neq p$ so 0 $\notin C(p)$.

 Thus $C(p) = \langle p \rangle$.

I used $C(a)$ to from the centralizer of a.