3. True or False (If true, then prove it. If false, then give a counterexample.) If H and K are subgroups of the group G, then the intersection of H and K is a subgroup of G.

True

The $x, y \in H \cap K$ which is $xy \in H$ and $xy \in K$ which is $xy \in H \cap K$

False

If $e \in H \cap K$

Also G is associative so the operation associates on every subset of G.

If $x \in H \cap K$, then H is a group so $x \in H$. Also $x \in K$ and K is a group so $x \in K$.

Thus $x \in H \cap K$.

4. True or False (If true, then prove it. If false, then give a counterexample.) If H and K are subgroups of the group G, then the union of H and K is a subgroup of G.

False

$H \cup K = \{ \emptyset, \emptyset \}$ is not closed, and thus is not a subgroup.