Math 546, Final Exam, Fall 2004

The exam is worth 100 points.

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

I will grade the exams on Saturday. When I finish, I will e-mail your grade to you.

I will post the solutions on my website when the exam is finished.

1. (7 points)STATE and PROVE Cayley's Theorem.

Cayley's Theorem. Every group is isomorphic to a group of permutations.

Proof. Let G be a group. For each element a in G, let λ_a be the function from G to G, which is defined by $\lambda_a(g) = ag$.

(a) We first show that $\lambda_a \colon G \to G$ is one-to-one and onto. **one-to-one:** Let x and y be in G with $\lambda_a(x) = \lambda_a(y)$. It follows that ax = ay. Multiply both sides of the equation on the left by a^{-1} to see that x = y. **onto:** Take $x \in G$. We see that $a^{-1}x \in G$ and $\lambda_a(a^{-1}x) = x$.

We now know that each λ_a is an element of Sym(G).

- (b) Consider the function $\Lambda: G \to \operatorname{Sym}(G)$, which is given by $\Lambda(a) = \lambda_a$. We claim that Λ is a group homomorphism. Take elements a and b of G. We must show that $\Lambda(ab)$ is equal to $\Lambda_a \circ \Lambda_b$. We know that $\Lambda(ab) = \lambda_{ab}$ and $\Lambda_a \circ \Lambda_b = \lambda_a \circ \lambda_b$. We show that the FUNCTIONS λ_{ab} and $\lambda_a \circ \lambda_b$ are equal by showing that they do the same thing to each element of the domain. Take x in G. We see that $\lambda_{ab}(x) = abx$. We also see that $(\lambda_a \circ \lambda_b)(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = abx$. We conclude that $\lambda_{ab} = \lambda_a \circ \lambda_b$; hence, $\Lambda(ab) = \Lambda_a \circ \Lambda_b$.
- (c) We show that Λ is one-to-one. Suppose a and b are in G, with $\Lambda(a) = \Lambda(b)$. This means that the functions λ_a and λ_b from G to G are equal. In particular, $\lambda_a(\mathrm{id}) = \lambda_b(\mathrm{id})$. In other words, $a = a(\mathrm{id}) = b(\mathrm{id}) = b$.

We have proven that Λ is an isomorphism from G onto a subgroup of the permutation group Sym(G).

2. (7 points) Apply the proof of Cayley's Theorem to the element (1, 2, 3) of the group

 $A_4 = \{(1), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3$

 $(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}.$

(Number the elements of A_4 using the order I in which I listed the elements.) What do you get?

The elements of A_4 correspond to $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ by way of:

 $\begin{array}{c} (1) \leftrightarrow 1 \\ (1,2,3) \leftrightarrow 2 \\ (1,3,2) \leftrightarrow 3 \\ (1,2,4) \leftrightarrow 4 \\ (1,4,2) \leftrightarrow 5 \\ (1,3,4) \leftrightarrow 6 \\ (1,4,3) \leftrightarrow 7 \\ (2,3,4) \leftrightarrow 8 \\ (2,4,3) \leftrightarrow 9 \\ (1,2)(3,4) \leftrightarrow 10 \\ (1,3)(2,4) \leftrightarrow 11 \\ (1,4)(2,3) \leftrightarrow 12 \end{array}$

The function $\lambda_{(1,2,3)}$ takes

$$(1) \mapsto (1, 2, 3) \mapsto (1, 3, 2) \mapsto (1)$$

$$(1, 2, 4) \mapsto (1, 3)(2, 4) \mapsto (2, 4, 3) \mapsto (1, 2, 4)$$

$$(1, 4, 2) \mapsto (1, 4, 3) \mapsto (1, 4)(2, 3) \mapsto (1, 4, 2)$$

$$(1, 3, 4) \mapsto (2, 3, 4) \mapsto (1, 2)(3, 4) \mapsto (1, 3, 4);$$

So, $\lambda_{(1,2,3)}$ corresponds to the element

$$(1, 2, 3)(4, 11, 9)(5, 7, 12)(6, 8, 10)$$

of S_{12} .

3. (7 points) Let $\varphi: G \to G'$ be a group homomorphism. Prove that φ is one-to-one if and only if the kernel of φ is $\{id\}$.

⇒ Suppose φ is one-to-one. We know that $\varphi(id) = id$ since φ is a group homomorphism. If $x \in \ker \varphi$, then $\varphi(x) = \varphi(id)$. The hypothesis that φ is one-to-one ensures that x = id. Thus, we have shown that $\ker \varphi = \{id\}$.

 $\Leftarrow \text{ Suppose ker } \varphi = \{\text{id}\} \text{ . We must show that } \varphi \text{ is one-to-one. Take } x \text{ and } y \text{ in } G \text{ with } \varphi(x) = \varphi(y) \text{ . Use the fact that } \varphi \text{ is a group homomorphism to see that } \varphi(xy^{-1}) = \text{id}; \text{ hence, } xy^{-1} \in \text{ker } \varphi = \{\text{id}\} \text{ . So, } xy^{-1} = \text{id} \text{ . So, } x = y \text{ , and } \varphi \text{ is one-to-one.}$

4. (7 points) Give an example of a non-abelian group of order 16. A very short explanation will suffice.

The group $U_2 \times D_4$ has 2(8)=16 elements. This group is non-abelian because

$$(1, \sigma)(1, \rho) = (1, \sigma\rho) \neq (1, \rho\sigma) = (1, \rho)(1, \sigma).$$

5. (7 points) Give an example of an abelian, but non-cyclic, group of order 16. Explain.

The group $\mathbb{Z}_2 \times \mathbb{Z}_8$ also has 16 elements. Every element in this group has order less than or equal to 8.

6. (7 points) Let H be the subgroup $\langle (1,2,3) \rangle$ of the group $G = A_4$, and let S be the set of left cosets of H in G. Define multiplication on S by $(g_1H)(g_2H) = (g_1g_2)H$ for all g_1 and g_2 in G. Is S a group? Explain very thoroughly.

NO!! The "multiplication" does not make any sense. We see that (1)H = (1, 2, 3)H. However,

$$[(1)H][(12)(34)H] \neq [(1,2,3)H][(12)(34)H]$$

because

$$[(1)H][(12)(34)H] = [(12)(34)]H = \{(12)(34), (2,4,3), (1,4,3)\}$$

and

 $[(1,2,3)H][(12)(34)H] = [(1,2,3)(12)(34)]H = \{(1,3,4), (1,2,4), (1,4)(2,3)\}.$

- 7. (9 points) Let N be a normal subgroup of the group G and let H be any subgroup of G. Let HN be the subset $\{hn \mid h \in H \text{ and } n \in N\}$ of G.
 - (a) Prove that HN is a subgroup of G.
 - (b) Prove that N is a normal subgroup of HN.
 - (c) Let $\varphi: H \to \frac{HN}{N}$ be the group homomorphism which is given as the composition of inclusion $H \to HN$, followed by the natural quotient map $HN \to \frac{HN}{N}$. What is the kernel of φ ?
 - (d) Apply the First Isomorphism Theorem to φ .

(You just proved the "Second Isomorphism Theorem".)

Lemma. If $h \in H$ and $n \in N$, then $nh \in HN$.

Proof. We know that N is a normal subgroup of G; and therefore, $h^{-1}nh \in N$. It follows that $h^{-1}nh = n'$ for some $n' \in N$ and $nh = hn' \in HN$.

(a) **Closure:** Take two typical elements x_1 and x_2 of HN. We see that $x_i = h_i n_i$ for some h_i in H and $n_i \in N$. Also,

$$x_1 x_2 = h_1 n_1 h_2 n_2 = h_1 h_2 n_1' n_2 \in HN$$

for some $n'_1 \in N$ by the Lemma.

Inverses: Take x = hn from HN. We know that the inverse of x in G is $x^{-1} = n^{-1}h^{-1}$. The Lemma tells us that $x^{-1} \in NH$.

Identity: The identity element of G is in HN because id = (id)(id).

- (b) If n is in N and $x \in HN$, then $x^{-1}nx$ is in N because N is a normal subgroup of all of G.
- (c) The kernel of φ is $H \cap N$.
- $(\mathbf{d}) \quad \frac{H}{H \cap N} \cong \frac{HN}{N} .$

8. (7 points) Let V_4 be the subset $\{id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ of S_4 . It is true that V_4 is a normal subgroup of S_4 ; however, you do not have to prove this. What familiar group is isomorphic to $\frac{S_4}{V_4}$? Explain.

Apply the second isomorphism theorem to see that $\frac{S_4}{V_4}$ is isomorphic to S_3 . Let $\varphi \colon S_3 \to \frac{S_3V_4}{V_4}$ be the homomorphism which is given by $\varphi(x)$ is equal to the coset xV_4 , for each x in S_3 . It is clear that φ is onto. The kernel of φ is $S_3 \cap V_4 = \{\text{id}\}$. So, S_3 is isomorphic to $\frac{S_3V_4}{V_4}$. It follows that $\frac{S_3V_4}{V_4}$ consists of six cosets. The subgroup V_4 of the group S_3V_4 has four elements. So, the subgroup S_3V_4 of the group S_4 has 24 elements. Thus, $S_3V_4 = S_4$ and the groups $\frac{S_4}{V_4}$ and S_3 are isomorphic.

9. (7 points) List the elements of the group $S_3 \times U_4$. What is the order of each element?

element	order
((1), 1)	1
$((1), \imath)$	4
((1), -1)	2
((1), -i)	4
((1,2),1)	2
((1,2),i)	4
((1,2),-1)	2
((1,2),-i)	4
((1,3),1)	2
$((1,3),\imath)$	4
((1,3),-1)	2
((1,3),-i)	4
((2,3),1)	2
$((2,3),\imath)$	4
((2,3),-1)	2
((2,3), -i)	4
((1,2,3),1)	3
$((1,2,3),\imath)$	12
(1, 2, 3), -1)	6
(1, 2, 3), -i)	12
((1, 3, 2), 1)	3
$((1,3,2),\imath)$	12
(1, 3, 2), -1)	6
(1,3,2),-i)	12

10. (7 points) Suppose that G is a group with at least two elements and that the only subgroups of G are $\{id\}$ and G. What is G? Say as much as you can. Prove your statement.

Proposition. If G is a group with at least two elements and the only subgroups of G are $\{id\}$ and G, then G is a finite cyclic group of prime order.

Proof. G is cyclic: Let g be an element of G with $g \neq id$. The hypothesis ensures that $\langle g \rangle = G$.

G is finite: Every infinite cyclic group has many subgroups. The group G only has two subgroups. So G is not infinite.

G has prime order: The group G is cyclic; hence, G has exactly one subgroup for each divisor of the order of G. The group G only has two subgroups; so, the order of G only has two positive factors. In other words, the order of G is prime.

11. (7 points) Let G be a finite group of order n. Let g be an element of G. Prove that g^n is equal to the identity element of G.

Let m equal the order of g. In other words, m is the least positive integer with $g^m = \text{id}$. It follows that the subgroup $\langle g \rangle$ of G consists of exactly m elements. Lagrange's Theorem asserts that m divides evenly into n; that is, md = n for some integer d. We see that $g^n = g^{md} = (g^m)^d = (\text{id})^d = \text{id}$.

12. (7 points) Let a and b be elements of finite order in the group G. State and prove an interesting statement which gives the order of ab in terms of the order of a and the order of b.

Proposition. Let a and b be elements of finite order in the group G. Suppose that ab = ba and that the order of a is relatively prime to the order of b. Then the order of ab is equal to the order of a times the order of b.

Proof. Let ℓ equal the order of a, m equal the order of b, and n equal the order of ab.

 $n \leq \ell m$: It is clear that

$$(ab)^{\ell m} = (a^{\ell})^m (b^m)^{\ell} = (\mathrm{id})^m (\mathrm{id})^{\ell} = \mathrm{id}.$$

So, the order of ab, which is the least positive power of ab which equals id, is less than or equal to ℓm .

 $\ell m \leq n$: We know that $(ab)^n = \operatorname{id}$. Let x be the element $a^n = b^{-n}$ of G. We see that $\langle x \rangle$ is a subgroup of $\langle a \rangle$. So the order of $\langle x \rangle$ divides ℓ by Lagrange's Theorem. Also, $\langle x \rangle$ is a subgroup of $\langle b \rangle$. So the order of $\langle x \rangle$ divides m. The integers ℓ and m have no common divisors other than 1 and -1; hence the order of $\langle x \rangle$ is 1. In other words, $a^n = x = \operatorname{id}$. It follows that ℓ divides into n. Also, $b^{-n} = x = \operatorname{id}$; so, $b^n = \operatorname{id}$ and m divides into n. The integers ℓ and m are relatively prime with $\ell | n$ and m | n. It follows that $\ell m | n$; and therefore, $\ell m \leq n$.

- 13. (7 points) Suppose that S and T are sets and $\phi: S \to T$ and $\theta: T \to S$ are functions with $\theta \circ \phi$ equal to the identity function on S.
 - (a) Does θ have to be one-to-one? PROVE or give a COUNTEREX-AMPLE.
 - (b) Does ϕ have to be onto? PROVE or give a COUNTEREXAM-PLE.

"NO!" for both parts. Let $S = \{1\}$, $T = \{1, 2\}$, $\phi(1) = 1$, $\theta(1) = 1$, $\theta(2) = 1$. Observe that $\theta \circ \phi$ is the identity function on S, but ϕ is not onto, and θ is not one-to-one.

14. (7 points) Prove that $\frac{\mathbb{R}}{\mathbb{Z}} \cong U$, where U is the unit circle in $(\mathbb{C} \setminus \{0\}, \times)$ and \mathbb{R} and \mathbb{Z} are groups under addition.

Define $\varphi \colon \mathbb{R} \to U$ by $\varphi(r) = e^{2\pi i r}$ for all $r \in \mathbb{R}$.

 φ is a homomorphism: Take r and s in \mathbb{R} . Observe that

$$\varphi(r+s) = e^{2\pi i (r+s)} = e^{2\pi i r} e^{2\pi i s} = \varphi(r) + \varphi(s).$$

 φ is onto: Take $u \in U$. Notice that $u = e^{i\theta}$ for some real number θ . Notice also, that $\frac{\theta}{2\pi} \in \mathbb{R}$ and $\varphi(\frac{\theta}{2\pi}) = u$.

ker $\varphi = \mathbb{Z}$: It is clear that $\mathbb{Z} \subseteq \ker \varphi$ because if $n \in \mathbb{Z}$, then $\varphi(n) = e^{2\pi i n} = \cos 2\pi n + i \sin 2\pi n = 1$. On the other hand, if r is in \mathbb{R} and $\varphi(r) = 1$, then $1 = e^{2\pi i r} = \cos(2\pi r) + i \sin(2\pi r)$. Think about the trigonometry for a few seconds. It follows that $2\pi r$ must be an integer multiple of 2π . In other words, r must be in \mathbb{Z} .

Apply the First Isomorphism Theorem: to conclude that $\frac{\mathbb{R}}{\mathbb{Z}} \cong U$.