
Math 546, Final Exam , Fall 2004
The exam is worth 100 points.

Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Take enough space for each problem. Turn in
your solutions in the order: problem 1, problem 2, . . . ; although, by using enough
paper, you can do the problems in any order that suits you.

I will grade the exams on Saturday. When I finish, I will e-mail your grade to
you.

I will post the solutions on my website when the exam is finished.

1. (7 points)STATE and PROVE Cayley’s Theorem.

Cayley’s Theorem. Every group is isomorphic to a group of permutations.

Proof. Let G be a group. For each element a in G , let λa be the function from
G to G , which is defined by λa(g) = ag .

(a) We first show that λa : G → G is one-to-one and onto.
one-to-one: Let x and y be in G with λa(x) = λa(y) . It follows that ax = ay .
Multiply both sides of the equation on the left by a−1 to see that x = y .
onto: Take x ∈ G . We see that a−1x ∈ G and λa(a−1x) = x .

We now know that each λa is an element of Sym(G) .
(b) Consider the function Λ: G → Sym(G) , which is given by Λ(a) = λa . We

claim that Λ is a group homomorphism. Take elements a and b of G .
We must show that Λ(ab) is equal to Λa ◦Λb . We know that Λ(ab) = λab

and Λa ◦ Λb = λa ◦ λb . We show that the FUNCTIONS λab and λa ◦ λb

are equal by showing that they do the same thing to each element of the
domain. Take x in G . We see that λab(x) = abx . We also see that
(λa ◦λb)(x) = λa(λb(x)) = λa(bx) = abx . We conclude that λab = λa ◦λb ;
hence, Λ(ab) = Λa ◦ Λb .

(c) We show that Λ is one-to-one. Suppose a and b are in G , with
Λ(a) = Λ(b) . This means that the functions λa and λb from G
to G are equal. In particular, λa(id) = λb(id) . In other words,
a = a(id) = b(id) = b .

We have proven that Λ is an isomorphism from G onto a subgroup of the
permutation group Sym(G) .

2. (7 points) Apply the proof of Cayley’s Theorem to the element (1, 2, 3)
of the group

A4 = {(1), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3),

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
(Number the elements of A4 using the order I in which I listed the
elements.) What do you get?
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The elements of A4 correspond to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} by way of:

(1) ↔ 1
(1, 2, 3) ↔ 2
(1, 3, 2) ↔ 3
(1, 2, 4) ↔ 4
(1, 4, 2) ↔ 5
(1, 3, 4) ↔ 6
(1, 4, 3) ↔ 7
(2, 3, 4) ↔ 8
(2, 4, 3) ↔ 9

(1, 2)(3, 4) ↔ 10
(1, 3)(2, 4) ↔ 11
(1, 4)(2, 3) ↔ 12

The function λ(1,2,3) takes

(1) 7→ (1, 2, 3) 7→ (1, 3, 2) 7→ (1)
(1, 2, 4) 7→ (1, 3)(2, 4) 7→ (2, 4, 3) 7→ (1, 2, 4)
(1, 4, 2) 7→ (1, 4, 3) 7→ (1, 4)(2, 3) 7→ (1, 4, 2)
(1, 3, 4) 7→ (2, 3, 4) 7→ (1, 2)(3, 4) 7→ (1, 3, 4);

So, λ(1,2,3) corresponds to the element

(1, 2, 3)(4, 11, 9)(5, 7, 12)(6, 8, 10)

of S12 .

3. (7 points) Let ϕ : G → G′ be a group homomorphism. Prove that ϕ is
one-to-one if and only if the kernel of ϕ is {id} .

⇒⇒⇒ Suppose ϕ is one-to-one. We know that ϕ(id) = id since ϕ is a group
homomorphism. If x ∈ ker ϕ , then ϕ(x) = ϕ(id) . The hypothesis that ϕ is
one-to-one ensures that x = id . Thus, we have shown that ker ϕ = {id} .
⇐⇐⇐ Suppose ker ϕ = {id} . We must show that ϕ is one-to-one. Take x and y in
G with ϕ(x) = ϕ(y) . Use the fact that ϕ is a group homomorphism to see that
ϕ(xy−1) = id ; hence, xy−1 ∈ ker ϕ = {id} . So, xy−1 = id . So, x = y , and ϕ is
one-to-one.

4. (7 points) Give an example of a non-abelian group of order 16. A very
short explanation will suffice.

The group U2 × D4 has 2(8)=16 elements. This group is non-abelian because

(1, σ)(1, ρ) = (1, σρ) 6= (1, ρσ) = (1, ρ)(1, σ).

5. (7 points) Give an example of an abelian, but non-cyclic, group of
order 16. Explain.

The group Z2 × Z8 also has 16 elements. Every element in this group has order
less than or equal to 8 .
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6. (7 points) Let H be the subgroup <(1, 2, 3)> of the group G = A4 ,
and let S be the set of left cosets of H in G . Define multiplication
on S by (g1H)(g2H) = (g1g2)H for all g1 and g2 in G . Is S a group?
Explain very thoroughly.

NO!! The “multiplication” does not make any sense. We see that
(1)H = (1, 2, 3)H . However,

[(1)H][(12)(34)H] 6= [(1, 2, 3)H][(12)(34)H]

because

[(1)H][(12)(34)H] = [(12)(34)]H = {(12)(34), (2, 4, 3), (1, 4, 3)}

and

[(1, 2, 3)H][(12)(34)H] = [(1, 2, 3)(12)(34)]H = {(1, 3, 4), (1, 2, 4), (1, 4)(2, 3)}.

7. (9 points) Let N be a normal subgroup of the group G and let H be
any subgroup of G . Let HN be the subset {hn | h ∈ H and n ∈ N} of
G .
(a) Prove that HN is a subgroup of G .
(b) Prove that N is a normal subgroup of HN .
(c) Let ϕ : H → HN

N be the group homomorphism which is given as
the composition of inclusion H → HN , followed by the natural
quotient map HN → HN

N . What is the kernel of ϕ ?
(d) Apply the First Isomorphism Theorem to ϕ .
(You just proved the “Second Isomorphism Theorem”.)

Lemma. If h ∈ H and n ∈ N , then nh ∈ HN .

Proof. We know that N is a normal subgroup of G ; and therefore, h−1nh ∈ N .
It follows that h−1nh = n′ for some n′ ∈ N and nh = hn′ ∈ HN .

(a) Closure: Take two typical elements x1 and x2 of HN . We see that
xi = hini for some hi in H and ni ∈ N . Also,

x1x2 = h1n1h2n2 = h1h2n
′
1n2 ∈ HN

for some n′
1 ∈ N by the Lemma.

Inverses: Take x = hn from HN . We know that the inverse of x in G is
x−1 = n−1h−1 . The Lemma tells us that x−1 ∈ NH .
Identity: The identity element of G is in HN because id = (id)(id) .

(b) If n is in N and x ∈ HN , then x−1nx is in N because N is a normal
subgroup of all of G .

(c) The kernel of ϕ is H ∩ N .
(d) H

H∩N
∼= HN

N .
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8. (7 points) Let V4 be the subset {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} of
S4 . It is true that V4 is a normal subgroup of S4 ; however, you do
not have to prove this. What familiar group is isomorphic to S4

V4
?

Explain.

Apply the second isomorphism theorem to see that S4
V4

is isomorphic to S3 . Let
ϕ : S3 → S3V4

V4
be the homomorphism which is given by ϕ(x) is equal to the

coset xV4 , for each x in S3 . It is clear that ϕ is onto. The kernel of ϕ is
S3 ∩V4 = {id} . So, S3 is isomorphic to S3V4

V4
. It follows that S3V4

V4
consists of six

cosets. The subgroup V4 of the group S3V4 has four elements. So, the subgroup
S3V4 of the group S4 has 24 elements. Thus, S3V4 = S4 and the groups S4

V4
and

S3 are isomorphic.

9. (7 points) List the elements of the group S3 × U4 . What is the order
of each element?

element order
((1), 1) 1
((1), ı) 4

((1),−1) 2
((1),−ı) 4
((1, 2), 1) 2
((1, 2), ı) 4

((1, 2),−1) 2
((1, 2),−ı) 4
((1, 3), 1) 2
((1, 3), ı) 4

((1, 3),−1) 2
((1, 3),−ı) 4
((2, 3), 1) 2
((2, 3), ı) 4

((2, 3),−1) 2
((2, 3),−ı) 4
((1, 2, 3), 1) 3
((1, 2, 3), ı) 12

((1, 2, 3),−1) 6
((1, 2, 3),−ı) 12
((1, 3, 2), 1) 3
((1, 3, 2), ı) 12

((1, 3, 2),−1) 6
((1, 3, 2),−ı) 12

10. (7 points) Suppose that G is a group with at least two elements and
that the only subgroups of G are {id} and G . What is G ? Say as
much as you can. Prove your statement.
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Proposition. If G is a group with at least two elements and the only subgroups of
G are {id} and G , then G is a finite cyclic group of prime order.

Proof. G is cyclic: Let g be an element of G with g 6= id . The hypothesis
ensures that <g> = G .

G is finite: Every infinite cyclic group has many subgroups. The group G only
has two subgroups. So G is not infinite.

G has prime order: The group G is cyclic; hence, G has exactly one subgroup
for each divisor of the order of G . The group G only has two subgroups; so, the
order of G only has two positive factors. In other words, the order of G is prime.

11. (7 points) Let G be a finite group of order n . Let g be an element of
G . Prove that gn is equal to the identity element of G .

Let m equal the order of g . In other words, m is the least positive integer with
gm = id . It follows that the subgroup <g> of G consists of exactly m elements.
Lagrange’s Theorem asserts that m divides evenly into n ; that is, md = n for
some integer d . We see that gn = gmd = (gm)d = (id)d = id .

12. (7 points) Let a and b be elements of finite order in the group G .
State and prove an interesting statement which gives the order of ab
in terms of the order of a and the order of b .

Proposition. Let a and b be elements of finite order in the group G . Suppose
that ab = ba and that the order of a is relatively prime to the order of b . Then
the order of ab is equal to the order of a times the order of b .

Proof. Let ` equal the order of a , m equal the order of b , and n equal the order
of ab .

n ≤ `m : It is clear that

(ab)`m = (a`)m(bm)` = (id)m(id)` = id.

So, the order of ab , which is the least positive power of ab which equals id , is
less than or equal to `m .

`m ≤ n : We know that (ab)n = id . Let x be the element an = b−n of G .
We see that <x> is a subgroup of <a> . So the order of <x> divides ` by
Lagrange’s Theorem. Also, <x> is a subgroup of <b> . So the order of <x>
divides m . The integers ` and m have no common divisors other than 1 and
−1 ; hence the order of <x> is 1 . In other words, an = x = id . It follows that
` divides into n . Also, b−n = x = id ; so, bn = id and m divides into n . The
integers ` and m are relatively prime with `|n and m|n . It follows that `m|n ;
and therefore, `m ≤ n .
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13. (7 points) Suppose that S and T are sets and φ : S → T and θ : T → S
are functions with θ ◦ φ equal to the identity function on S .
(a) Does θ have to be one-to-one? PROVE or give a COUNTEREX-

AMPLE.
(b) Does φ have to be onto? PROVE or give a COUNTEREXAM-
PLE.

“NO!” for both parts. Let S = {1} , T = {1, 2} , φ(1) = 1 , θ(1) = 1 , θ(2) = 1 .
Observe that θ ◦ φ is the identity function on S , but φ is not onto, and θ is not
one-to-one.

14. (7 points) Prove that R

Z

∼= U , where U is the unit circle in (C \ {0},×)
and R and Z are groups under addition.

Define ϕ : R → U by ϕ(r) = e2πır for all r ∈ R .

ϕ is a homomorphism: Take r and s in R . Observe that

ϕ(r + s) = e2πı(r+s) = e2πıre2πıs = ϕ(r) + ϕ(s).

ϕ is onto: Take u ∈ U . Notice that u = eıθ for some real number θ . Notice
also, that θ

2π ∈ R and ϕ( θ
2π ) = u .

ker ϕ = Z : It is clear that Z ⊆ ker ϕ because if n ∈ Z , then ϕ(n) = e2πın =
cos 2πn + ı sin 2πn = 1. On the other hand, if r is in R and ϕ(r) = 1 , then
1 = e2πır = cos(2πr)+ ı sin(2πr) . Think about the trigonometry for a few seconds.
It follows that 2πr must be an integer multiple of 2π . In other words, r must be
in Z .

Apply the First Isomorphism Theorem: to conclude that R

Z

∼= U .


