Math 546, Exam 4, Fall 2004

The exam is worth 50 points.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ...; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office TOMORROW by about 6PM, you may pick it up any time between then and the next class.

I will post the solutions on my website at about 4:00 PM today.

1. (7 points) STATE and PROVE the Chinese Remainder Theorem.
2. (8 points) STATE and PROVE the First Isomorphism Theorem.
3. (7 points) Are the groups $\frac{\mathbb{Z}}{6 \mathbb{Z}} \times \frac{\mathbb{Z}}{5 \mathbb{Z}}$ and $\frac{\mathbb{Z}}{2 \mathbb{Z}} \times \frac{\mathbb{Z}}{15 \mathbb{Z}}$ isomorphic? PROVE your answer.
4. (7 points) Are the groups $\frac{\mathbb{Z}}{4 \mathbb{Z}} \times \frac{\mathbb{Z}}{4 \mathbb{Z}}$ and $\frac{\mathbb{Z}}{4 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$ isomorphic? PROVE your answer.
5. (7 points) Are the groups $(\mathbb{R},+)$ and $\left(\mathbb{R}^{\text {pos }}, \times\right)$ isomorphic? PROVE your answer. (I am using $\mathbb{R}^{\text {pos }}$ to represent the set of positive real numbers.)
6. (7 points) Let $\phi: G_{1} \rightarrow G_{2}$ and $\theta: G_{2} \rightarrow G_{3}$ be group homomorphisms. Prove that $\theta \circ \phi$ is a group homomorphism.
7. (7 points) Suppose that S and T are sets and $\phi: S \rightarrow T$ and $\theta: T \rightarrow S$ are functions with $\theta \circ \phi$ equal to the identity function on S.
(a) Does ϕ have to be one-to-one? PROVE or give a COUNTEREXAMPLE.
(b) Does θ have to be onto? PROVE or give a COUNTEREXAMPLE.
