PRINT Your Name: ____________________________

There are 6 problems on 3 pages. The exam is worth a total of 50 points. Problems 5 and 6 are worth 9 points each. The other problems are worth 8 points each. In this exam, a subgroup H of a group G is called proper if $H \subseteq G$.

1. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.)
 If every proper subgroup H of a group G is cyclic, then G is cyclic.

 False The subgroup $\{e, 0, p^2, 0p^2\}$ of D_4 is not cyclic because every element squares to e. But the subgroups of this group all are cyclic because the product of any two of the non-identity elements is the third non-identity element.

2. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.)
 If G is a cyclic group, then every proper subgroup H of G is cyclic.

 True Let $G = \langle g \rangle$. If $H = \langle e, 0^2 \rangle$, then H is cyclic. Hence $H \cong \mathbb{Z}$.

 We assume $e, 0^2 \notin H$. Let m be the least positive integer with $gm \notin H$. I claim $H \cong \mathbb{Z}/m\mathbb{Z}$.

 - If $H \cong \mathbb{Z}/m\mathbb{Z}$, then $H = \langle g \rangle$ for some n. Decide minimal n to set $n = qm + r$ for integers q and r with $0 \leq r < m$.
 - We see that $g^n (gm)^{-q} \in H$. So $g^n \notin H$. The choice of m tells us $r = 0$; hence $n = qm$ and $H = \langle g \rangle$. Thus $H \cong \mathbb{Z}/m\mathbb{Z}$.
