7. Let G be a group with identity element e. Suppose that $x^2 = e$ for all $x \in G$. Prove that G is an abelian group.

Take x and $y \in G$.

$$(xy)^2 = e \quad \text{by hypothesis}$$

thus $xyxy = e$

multiplying on the left by x and on the right by y

$xxyxyy = xy$

$. \therefore \ yx = xy \checkmark$