Math 546, Exam 1, Spring 2010

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are **5** problems. Each problem is worth 10 points. Write **coherently** in **complete sentences**.

- No Calculators or Cell phones.
- 1. Recall that U_6 is the subgroup $\{1, z, z^2, z^3, z^4, z^5\}$ of (\mathbb{C}, \times) , with $z = e^{\frac{2\pi i}{6}} = \cos(\frac{2\pi}{6}) + i \sin(\frac{2\pi}{6})$
 - (a) Identify 2 subgroups of U_6 in addition to $\{1\}$ and U_6 . (I don't need to see a proof.)
 - (b) Which elements of U_6 generate U_6 ? (Recall that the element g of the group (G, *) generates G if every element of G is equal to $\underbrace{g * g * \cdots * g}_{n \text{ times}}$,

for some integer n.) (I do want to see an explanation.)

- 2. Recall that D_3 is the group {id, ρ , ρ^2 , σ , $\sigma\rho$, $\sigma\rho^2$ }, where σ is reflection across the *x*-axis and ρ is rotation by $2\pi/3$ radians, counter-clockwise, fixing the origin.
 - (a) Identify 4 subgroups of D_3 in addition to {id} and D_3 . (I don't need to see a proof.)
 - (b) Which elements of D_3 generate D_3 ? The word "generates" is defined in problem 1. (I do want to see an explanation.)
- 3. Let (G, *) be a group and $H = \{g * g * g \mid g \in G\}$.
 - (a) Assume that the group G is Abelian. Prove that H is a subgroup of G.
 - (b) Give an example which shows that H is not always a subgroup of G. (Provide all details.)
- 4. Let $S = \mathbb{R} \setminus \{-2\}$. Define * on S by a * b = ab + 2a + 2b + 2. Prove that (S, *) is a group.
- 5. Recall that D_4 is the group {id, ρ , ρ^2 , ρ^3 , σ , $\sigma\rho$, $\sigma\rho^2$, $\sigma\rho^3$ }, where σ is reflection across the *x*-axis and ρ is rotation by $2\pi/4$ radians, counter-clockwise, fixing the origin. List the elements of the following set:

$$Z = \{ \tau \in D_4 \mid \tau \omega = \omega \tau \text{ for all } \omega \text{ in } D_4 \}.$$

I do want an explanation. We saw in class that the 8 listed elements of D_4 are distinct; we also saw that $\rho\sigma = \sigma\rho^3$.