Math 546, Exam 1, Spring 2010
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{5}$ problems. Each problem is worth 10 points. Write coherently in complete sentences.
No Calculators or Cell phones.

1. Recall that U_{6} is the subgroup $\left\{1, z, z^{2}, z^{3}, z^{4}, z^{5}\right\}$ of (\mathbb{C}, \times), with $z=e^{\frac{2 \pi i}{6}}=$ $\cos \left(\frac{2 \pi}{6}\right)+\imath \sin \left(\frac{2 \pi}{6}\right)$
(a) Identify 2 subgroups of U_{6} in addition to $\{1\}$ and U_{6}. (I don't need to see a proof.)
(b) Which elements of U_{6} generate U_{6} ? (Recall that the element g of the group $(G, *)$ generates G if every element of G is equal to $\underbrace{g * g * \cdots * g}_{n \text { times }}$, for some integer n.) (I do want to see an explanation.)
2. Recall that D_{3} is the group $\left\{\mathrm{id}, \rho, \rho^{2}, \sigma, \sigma \rho, \sigma \rho^{2}\right\}$, where σ is reflection across the x-axis and ρ is rotation by $2 \pi / 3$ radians, counter-clockwise, fixing the origin.
(a) Identify 4 subgroups of D_{3} in addition to \{id\} and D_{3}. (I don't need to see a proof.)
(b) Which elements of D_{3} generate D_{3} ? The word "generates" is defined in problem 1. (I do want to see an explanation.)
3. Let $(G, *)$ be a group and $H=\{g * g * g \mid g \in G\}$.
(a) Assume that the group G is Abelian. Prove that H is a subgroup of G.
(b) Give an example which shows that H is not always a subgroup of G. (Provide all details.)
4. Let $S=\mathbb{R} \backslash\{-2\}$. Define $*$ on S by $a * b=a b+2 a+2 b+2$. Prove that $(S, *)$ is a group.
5. Recall that D_{4} is the group $\left\{\mathrm{id}, \rho, \rho^{2}, \rho^{3}, \sigma, \sigma \rho, \sigma \rho^{2}, \sigma \rho^{3}\right\}$, where σ is reflection across the x-axis and ρ is rotation by $2 \pi / 4$ radians, counter-clockwise, fixing the origin. List the elements of the following set:

$$
Z=\left\{\tau \in D_{4} \mid \tau \omega=\omega \tau \text { for all } \omega \text { in } D_{4}\right\}
$$

I do want an explanation. We saw in class that the 8 listed elements of D_{4} are distinct; we also saw that $\rho \sigma=\sigma \rho^{3}$.

