Math 546, Exam 1, Fall 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. There are **5** problems. Each problem is worth 10 points. Write **coherently** in **complete sentences**. **No Calculators or Cell phones.**

- 1. Recall that U_{12} is the subgroup $\{1, z, z^2, z^3, z^4, z^5, z^6, z^7, z^8, z^9, z^{10}, z^{11}\}$ of $(\mathbb{C} \setminus \{0\}, \times)$, with $z = e^{\frac{2\pi i}{12}} = \cos(\frac{2\pi}{12}) + i\sin(\frac{2\pi}{12})$.
 - (a) Identify 4 subgroups of U_{12} in addition to $\{1\}$ and U_{12} . Please give a complete explanation.
 - (b) Which elements of U_{12} generate U_{12} ? (Recall that the element g of the group (G, *) generates G if every element of G is equal to $g * g * \cdots * g$,

n times

for some integer n.) Please give a complete explanation.

- 2. Let $S = \mathbb{R} \setminus \{4\}$. Define * on S by a * b = 20 4a 4b + ab. Prove that (S, *) is a group.
- 3. Let G be a group with identity element id. Suppose that H and K are subgroups of G with $H \neq \{id\}$ and $K \neq \{id\}$. Is it possible for $H \cap K$ to equal $\{id\}$? If $H \cap K = \{id\}$ is possible, then give an example. If $H \cap K = \{id\}$ is not possible, then give a proof. (Recall that $H \cap K$ is the *intersection* of H and K; that is, $H \cap K = \{g \in G \mid g \in H \text{ AND } g \in K\}$.)
- 4. Let G be a group. Suppose that H and K are subgroups of G. Does $H \cup K$ have to be a subgroup of G? If $H \cup K$ is always a subgroup of G, then give a proof. If it is possible for $H \cup K$ not to be a subgroup of G, then give an example. (Recall that $H \cup K$ is the union of H and K; that is, $H \cup K = \{g \in G \mid g \in H \text{ OR } g \in K\}$.)
- 5. Let (G, *) be an Abelian group with identity element id and $H = \{g \in G \mid g * g * g = id\}$. Prove that H is a subgroup of G.