Math 546, Exam 1, Fall 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{5}$ problems. Each problem is worth 10 points. Write coherently in complete sentences.
No Calculators or Cell phones.

1. Recall that U_{12} is the subgroup $\left\{1, z, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}, z^{8}, z^{9}, z^{10}, z^{11}\right\}$ of ($\mathbb{C} \backslash\{0\}, \times$), with $z=e^{\frac{2 \pi \imath}{12}}=\cos \left(\frac{2 \pi}{12}\right)+\imath \sin \left(\frac{2 \pi}{12}\right)$.
(a) Identify 4 subgroups of U_{12} in addition to $\{1\}$ and U_{12}. Please give a complete explanation.
(b) Which elements of U_{12} generate U_{12} ? (Recall that the element g of the group $(G, *)$ generates G if every element of G is equal to $\underbrace{g * g * \cdots * g}_{n \text { times }}$, for some integer n.) Please give a complete explanation.
2. Let $S=\mathbb{R} \backslash\{4\}$. Define $*$ on S by $a * b=20-4 a-4 b+a b$. Prove that $(S, *)$ is a group.
3. Let G be a group with identity element id. Suppose that H and K are subgroups of G with $H \neq\{\operatorname{id}\}$ and $K \neq\{i d\}$. Is it possible for $H \cap K$ to equal $\{\mathrm{id}\}$? If $H \cap K=\{\mathrm{id}\}$ is possible, then give an example. If $H \cap K=\{\mathrm{id}\}$ is not possible, then give a proof. (Recall that $H \cap K$ is the intersection of H and K; that is, $H \cap K=\{g \in G \mid g \in H$ AND $g \in K\}$.)
4. Let G be a group. Suppose that H and K are subgroups of G. Does $H \cup K$ have to be a subgroup of G ? If $H \cup K$ is always a subgroup of G, then give a proof. If it is possible for $H \cup K$ not to be a subgroup of G, then give an example. (Recall that $H \cup K$ is the union of H and K; that is, $H \cup K=\{g \in G \mid g \in H$ OR $g \in K\}$.
5. Let $(G, *)$ be an Abelian group with identity element id and $H=\{g \in G \mid g * g * g=\mathrm{id}\}$. Prove that H is a subgroup of G.
