$$
\text { Math 546, Final Exam, Fall, } 1994
$$

PRINT Your Name:
There are 14 problems on 8 pages. The exam is worth a total of 100 points. Problems 8 and 11 are each worth 20 points. The other problems are worth 5 points each.

1. DEFINE group.

2. DEFINE group homomorphism.
3. What is the order of the element $1-i$ in the group $\left(\mathbb{C}^{*}, \times\right)$? Explain your answer.
4. What is the order of the element $\sqrt{2} / 2-i \sqrt{2} / 2$ in the group $\left(\mathbb{C}^{*}, \times\right)$? Explain your answer.
5. Prove that every subgroup of $(\mathbb{Z},+)$ is cyclic.
6. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) Let G be a group and let a be a fixed element of G. If $\gamma_{a}: G \rightarrow G$, is the function which is given by $\gamma_{a}(g)=a^{-1} g a$ for all $g \in G$, then γ_{a} is a permutation of the set G.
7. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) Let G be a group and let a be a fixed element of G. If $\rho_{a}: G \rightarrow G$, is the function which is given by $\rho_{a}(g)=g a$ for all $g \in G$, then ρ_{a} is a group homomorphism.
8. All of the following objects are groups. Which of these groups are cyclic groups? Explain each answer.
(a) $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$
(b) $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$
(c) The subgroup $\left\{e^{n} \mid n \in \mathbb{Z}\right\}$ of (\mathbb{R}^{*}, \times).
(d) The subgroup $\langle(1234),(13)(24)\rangle$ of S_{4}.
9. Record the multiplication table for the group $\frac{\mathbb{Z}_{6} \times \mathbb{Z}_{4}}{\langle(2,2)\rangle}$.
10. Is $\frac{\mathbb{Z}}{3 \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{9 \mathbb{Z}}$, given by $n+3 \mathbb{Z} \mapsto 2 n+9 \mathbb{Z}$, a group homomorphism? Explain your answer.
11. In this problem \mathbb{R}^{+}represents the set of positive real numbers. Which of the following are groups? Explain each answer.
(a) the set of functions $\left\{f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\right\}$, under composition of functions,
(b) the set of functions $\left\{f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\right\}$, under multiplication of functions,
12. Give an example of a group G, a subgroup H of G, and elements a, b, and c of G such that $a H=b H$, but $a c H \neq b c H$.
13. FILL IN the blank and then PROVE the resulting sentence. If H is a subgroup of the group G and a, b, and c are elements of G with $a H=b H$, then $a c H=b c H$.
14. STATE and PROVE the First Isomorphism Theorem.
