Math 546, Final Exam, Fall, 1994

PRINT Your Name:

There are 14 problems on 8 pages. The exam is worth a total of 100 points. Problems 8 and 11 are each worth 20 points. The other problems are worth 5 points each.

- 1. DEFINE group.
- 2. DEFINE group homomorphism.
- 3. What is the order of the element 1 i in the group (\mathbb{C}^*, \times) ? Explain your answer.
- 4. What is the order of the element $\sqrt{2}/2 i\sqrt{2}/2$ in the group (\mathbb{C}^*, \times) ? Explain your answer.
- 5. Prove that every subgroup of $(\mathbb{Z}, +)$ is cyclic.
- 6. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) Let G be a group and let a be a fixed element of G. If $\gamma_a: G \to G$, is the function which is given by $\gamma_a(g) = a^{-1}ga$ for all $g \in G$, then γ_a is a permutation of the set G.
- 7. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) Let G be a group and let a be a fixed element of G. If $\rho_a: G \to G$, is the function which is given by $\rho_a(g) = ga$ for all $g \in G$, then ρ_a is a group homomorphism.
- 8. All of the following objects are groups. Which of these groups are cyclic groups? Explain each answer.
 - (a) $\mathbb{Z}_3 \times \mathbb{Z}_3$
 - (b) $\mathbb{Z}_2 \times \mathbb{Z}_3$
 - (c) The subgroup $\{e^n \mid n \in \mathbb{Z}\}$ of (\mathbb{R}^*, \times) .
 - (d) The subgroup $\langle (1234), (13)(24) \rangle$ of S_4 .
- 9. Record the multiplication table for the group $\frac{\mathbb{Z}_6 \times \mathbb{Z}_4}{\langle (2,2) \rangle}$.
- 10. Is $\frac{\mathbb{Z}}{3\mathbb{Z}} \to \frac{\mathbb{Z}}{9\mathbb{Z}}$, given by $n + 3\mathbb{Z} \mapsto 2n + 9\mathbb{Z}$, a group homomorphism? Explain your answer.
- 11. In this problem \mathbb{R}^+ represents the set of positive real numbers. Which of the following are groups? Explain each answer.
 - (a) the set of functions $\{f : \mathbb{R}^+ \to \mathbb{R}^+\}$, under composition of functions,
 - (b) the set of functions $\{f : \mathbb{R}^+ \to \mathbb{R}^+\}$, under multiplication of functions,
 - (c) the set of matrices $\{A \in Mat_{max}(\mathbb{R}) \mid \det A \neq 0\}$ under matrix addition

- 12. Give an example of a group G, a subgroup H of G, and elements a, b, and c of G such that aH = bH, but $acH \neq bcH$.
- 13. FILL IN the blank and then PROVE the resulting sentence. If H is a subgroup of the group G and a, b, and c are elements of \overline{G} with aH = bH, then acH = bcH.
- 14. STATE and PROVE the First Isomorphism Theorem.