1. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.)
 If H and K are subgroups of a group G, then the intersection $H \cap K$ is also a subgroup of G.

2. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.)
 If H and K are subgroups of a group G, then the union $H \cup K$ is also a subgroup of G.

3. Let G be an abelian group with identity element e. Let

 $$H = \{ x \in G \mid x^2 = e \}.$$

 Prove that H is a subgroup of G.

4. Let G be a group with identity element e. Suppose that a, b, and c are elements of G with $c * b * a = e$. Prove that $b * a * c$ is also equal to e.

5. Let \mathbb{R}^* represent the set of nonzero real numbers. Define a binary operation $*$ on \mathbb{R}^* by $a * b = b / a$. Is $(\mathbb{R}^*, *)$ a group? If so prove it. If not, show why not.

6. Let G be a group. Let

 $$H = \{ x \in G \mid xy = yx \text{ for all } y \in G \}.$$

 Prove that H is a subgroup of G.

7. Let G be a group with identity element e. Suppose that $x^2 = e$ for all $x \in G$. Prove that G is an abelian group.