14. (5 points) Let \(W = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable} \} \). Is \(W \) a vector space? Explain.

Yes

The sum of two differentiable functions is differentiable.

A scalar times a differentiable function is differentiable.

The function \(f(x) = 0 \) for all \(x \) is differentiable.

15. (5 points) Give an example of three \(2 \times 2 \) matrices \(A, B, \) and \(C \), with \(A \) not the zero matrix, and \(B \neq C \), but \(BA = CA \).

\[
\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
\]

\[
\begin{bmatrix} 6 & -3 \\ 8 & -4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
\]

Take \(A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \), \(B = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \), \(C = \begin{bmatrix} 6 & -3 \\ 8 & -4 \end{bmatrix} \).

We see \(A \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \), \(B \neq C \), but \(BA = CA \).

16. (5 points) Let \(A \) and \(B \) be \(2 \times 2 \) matrices with \(A \) invertible. Does the column space of \(BA \) have to equal the column space of \(B \)? If the answer is yes, prove it. If the answer is no, give a counterexample.

Yes

\[\text{Col space } BA \subseteq \text{Col space } B; \]

Every vector in \(\text{Col space } BA \) has the form \(BAx \) for some \(x \).

But \(\text{Col space } B = B(Ax) \), which is in the \(\text{Col space } A \).

\[\text{Col space } B \subseteq \text{Col space } BA; \]

Every vector in the \(\text{Col space } B \) has the form \(Bx \) for some \(x \).

But \(Bx = BA(A^{-1}x) \), which is in the \(\text{Col space of } BA \).