4. (5 points) Define “linear transformation”. Use complete sentences.

A linear transformation is a function T from the vector space V to the vector space W is if

1. $T(u + v) = T(u) + T(v)$
2. $T(cu) = cT(u)$

for all $u, v \in V$ and $c \in \mathbb{F}$.

5. (5 points) The trace of the square matrix A is the sum of the numbers on its main diagonal. Let V be the set of all 3×3 matrices with trace 0. The set V is a vector space. You do NOT have to prove this. Give a basis for V. NO justification is needed.

I will list 8 linearly independent elements of V. V is a proper subspace of the set of all 3×3 matrices, so I will have listed the entire basis for V.

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ M_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ M_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ M_5 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ M_6 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ M_7 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ M_8 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

6. (5 points) Give an example of a matrix which is not diagonalizable. Explain why the matrix is not diagonalizable.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

is not diagonalizable. The only eigenvalue of A is $\lambda = 0$. The eigenspace corresponding to $\lambda = 0$ is spanned by $[1]$. If A were diagonalizable it would have to have two linearly independent eigenvectors. But it doesn't.