3. Define "null space".

The null space of the matrix \(A \) is the set of all column vectors \(x \) with \(Ax = 0 \).

4. Define "span". The vectors \(v_1, \ldots, v_p \) in the vector space \(V \) span \(V \) if every vector in \(V \) can be written as a linear combination of \(v_1, \ldots, v_p \).

5. Let \(V \) be the vector space of polynomials \(f(x) \) of degree at most three with \(f(1) = 0 \). Record a basis for \(V \). No justification is needed.

\[
\begin{align*}
x - 1 \\
x^2 - 1 \\
x^3 - 1
\end{align*}
\]