1. Define "basis". Use complete sentences. The vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are a basis for the vector space \(V \) if \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are linearly independent and \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) span \(V \).

2. Define "null space". Use complete sentences. The null space of the matrix \(A \) is the set of all vectors \(\mathbf{x} \) with \(A\mathbf{x} = \mathbf{0} \).

3. Complete the following definition. The vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) span the vector space \(V \), if \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) are in \(V \) and every vector in \(V \) is equal to a linear combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_n \).