9. Let \(v_1, \ldots, v_n \) be \(n \) linearly independent vectors in \(\mathbb{R}^n \). Prove that \(v_1, \ldots, v_n \) is a basis for \(\mathbb{R}^n \).

Let \(A \) be the matrix whose columns are \(v_1, \ldots, v_n \). The columns of \(A \) are linearly independent; hence, \(A \) is invertible by the IMT. Hence, the columns of \(A \) span \(\mathbb{R}^n \) again by the IMT.

10. Let \(A \) and \(B \) be \(2 \times 2 \) matrices with \(A \) invertible. Does the columns space of \(AB \) have to equal the column space of \(B \)? If the answer is yes, prove it. If the answer is no, give a counterexample.

\[\text{No} \]

The column space of \(AB \) has nothing to do with the column space of \(B \).

\[\text{Ex} \]

Take \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \). Notice that the column space of \(B \) is the set of all multiples of \(\begin{bmatrix} 2 \\ 4 \end{bmatrix} \).

The product \(AB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix} \). The column space of \(AB \) is spanned by \(\begin{bmatrix} 2 \\ 4 \end{bmatrix} \). These two vector spaces have only the zero vector in common.