Math 242, Exam 3, Summer 2012

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{6}$ problems. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible.
No Calculators or Cell phones.

1. (7 points) Solve $y^{\prime \prime}+2 y^{\prime}-3 y=e^{x}$. Express your answer in the form $y(x)$. Check your answer.
2. (7 points) Solve $y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y^{\prime}-4 y=0$. Express your answer in the form $y(x)$. Check your answer.
3. (6 points) Solve $y^{\prime \prime}+y^{\prime}+y=0$. Express your answer in the form $y(x)$. Check your answer.
4. (6 points) Suppose that a body moves through a resisting medium with resistance proportional to its velocity $v(t)$, so that $\frac{d v}{d t}=-k v$ for some positive constant k. Let $x(t)$ be the position of the object at time t. Let $v(0)=v_{0}$ and $x(0)=x_{0}$. Find the velocity and position of the object at time t. Find $\lim _{t \rightarrow \infty} x(t)$.
Please turn over.
5. (6 points) Consider a population $P(t)$ which satisfies the Differential Equation

$$
\begin{equation*}
\frac{d P}{d t}=a P^{2}-b P \tag{1}
\end{equation*}
$$

where a and b are positive constants. Let $B(t)=a P(t)^{2}$ and $D(t)=b P(t)$. Call $B(t)$ the birth rate at time t and $D(t)$ the death rate at time t. When we first thought about population models we learned that $P(t)=0$ and $P(t)=M$ are equilibrium solutions for the Differential Equation

$$
\begin{equation*}
\frac{d P}{d t}=k P(P-M) \tag{2}
\end{equation*}
$$

where k and M are positive constants. We also learned that the solution of (2) is

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{k M t}} .
$$

(a) Express the " M " of (2) in terms of the data $B(0), D(0)$, and $P(0)$ from (1).
(b) Suppose that some population is modeled by (1) and that the initial population is 100 and there are 10 births per month and 9 deaths per month occurring at $t=0$. How many months does it take until $P(t)$ reaches 10 times the threshold population M ?
6. (6 points) Consider the initial value problem $\frac{d y}{d x}=x+y^{3}, y(1)=2$. Use Euler's method to approximate $y(3 / 2)$. Use two steps, each of size $1 / 4$.

