Math 242, Exam 2, Spring 2010

Write everything on the blank paper provided.

You should KEEP this piece of paper.

If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are $\mathbf{5}$ problems. Each problem is worth 10 points.

SHOW your work. CIRCLE your answer. Write coherently.

No Calculators or Cell phones.

I will post the solutions later today.

1. Consider the Initial Value Problem $\frac{d x}{d t}=(x-1)(x-4), x(0)=x_{0}$.
(a) Solve the Initial Value Problem.
(b) Draw some of the solutions.
(c) Which choices for x_{0} cause x to go to infinity at some finite time?
(d) Which choices for x_{0} cause x to go toward a finite constant as t goes to infinity.
2. An object is moving in a straight line with position at time t given by $x(t)$ and velocity at time t given by $v(t)$. The object's motion satisfies the initial value problem

$$
\frac{d v}{d t}=-k v^{3 / 2}, \quad v(0)=v_{0}, \quad \text { and } \quad x(0)=x_{0}
$$

where k is a constant. Find $\lim _{t \rightarrow \infty} x(t)$.
3. Consider the initial value problem $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$. Use Euler's method to approximate $y(2 / 10)$. Use two steps, each of size $1 / 10$.
4. Solve $x \frac{d y}{d x}+6 y=3 x y^{4 / 3}$. Express your answer in the form $y(x)$. Check your answer.
5. Solve $\left(x^{2}+1\right) \frac{d y}{d x}+3 x y=6 x$. Express your answer in the form $y(x)$. Check your answer.

