Math 242, Exam 1, Spring, 2018

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

The solutions will be posted later today.

No Calculators or Cell phones.

(1) Solve the initial value problem $\frac{d y}{d x}=y e^{x}, y(0)=2 e$. Express your answer in the form $y=y(x)$. Please check your answer.
(2) Solve $3 y^{2} \frac{d y}{d x}+y^{3}=e^{-x}$. Express your answer in the form $y=y(x)$. Please check your answer.
(3) Consider the initial value problem $\frac{d y}{d x}=x+\frac{2}{y}, y(1)=3$. Use Euler's method to approximate $y(12 / 10)$. Use two steps, each of size $1 / 10$.
(4) A 120-gallon tank initially contains 90 lb of salt dissolved in 90 gal of water. Brine containing $2 \mathrm{lb} / \mathrm{gal}$ flows into the tank at the rate of $4 \mathrm{gal} / \mathrm{min}$ and the well-mixed mixture flows out of the tank at the rate of $3 \mathrm{gal} / \mathrm{min}$. How much salt is in the tank when the tank is full?
(5) The acceleration of a car is proportional to the difference between $200 \mathrm{ft} / \mathrm{sec}$ and the velocity of the car. If this car can accelerate from 0 to $40 \mathrm{ft} / \mathrm{sec}$ in 2 seconds, how long will it take for the car to accelerate from rest to $150 \mathrm{ft} / \mathrm{sec}$? Set up an initial value problem. Solve the initial value problem.

