Math 241 Exam 3 Summer 2002

PRINT Your Name:
There are 10 problems on 6 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!
I will put your exam outside my office door after I have graded it. You may pick it up any time before class on Monday. If I know your e-mail address, I will e-mail your score on Exam 3 to you.

1. Let $f(x, y)=2 x^{2} y^{3}-x^{3} y^{5}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
2. Sketch and label the level sets for levels $1,0,-1$, for the function $f(x, y)=x^{2}-y^{2}$.
3. Graph and name $z=x^{2}+y^{2}$ in 3 -space.
4. Graph and name $z^{2}=x^{2}+y^{2}$ in 3 -space.
5. Find the equation of the plane tangent to $z^{2}=x^{2}+y^{2}$ at the point $(3,4,5)$.
6. Consider the curve whose position vector is

$$
\overrightarrow{\boldsymbol{r}}(t)=2 t^{2} \overrightarrow{\boldsymbol{i}}-t^{3} \overrightarrow{\boldsymbol{j}}+\frac{4}{t} \overrightarrow{\boldsymbol{k}}
$$

Find the equations of the line tangent to this curve at $t=1$.
7. Find the directional derivative $D_{\overrightarrow{\boldsymbol{u}}} f$ at $(1,2)$ for the function $f(x, y)=3 x^{2} y$ in the direction of the unit vector $\frac{3}{5} \overrightarrow{\boldsymbol{i}}+\frac{4}{5} \overrightarrow{\boldsymbol{j}}$.
8. Find the length of the curve whose position vector is

$$
\overrightarrow{\boldsymbol{r}}(t)=t^{2} \overrightarrow{\boldsymbol{i}}-2 t^{3} \overrightarrow{\boldsymbol{j}}+6 t^{3} \overrightarrow{\boldsymbol{k}}
$$

for $0 \leq t \leq 1$.
9. The temperature of a plate at the point (x, y) is $T(x, y)=x y$.
(a) Draw and label the level sets $T=0, T=1, T=-1, T=2$, and $T=-2$.
(b) A heat seeking particle always moves in the direction of the greatest increase in temperature. Place such a particle on your answer to (a) at the point $(1,-2)$. Draw the path of the particle.
(c) Find the equation which gives the path of the particle of part (b).
10. The position of a moving particle at time t is given by the position vector

$$
\overrightarrow{\boldsymbol{r}}(t)=2 \cos t \overrightarrow{\boldsymbol{i}}-3 \sin ^{2} t \overrightarrow{\boldsymbol{j}}
$$

(a) Graph the path of the object.
(b) Eliminate the parameter and express the path of the object in cartesian coordinates.
(c) Which point on the curve corresponds to $t=\frac{\pi}{3}$?
(d) Draw $\overrightarrow{\boldsymbol{v}}\left(\frac{\pi}{3}\right)$. Point the tail on your answer to (c).
(e) Draw $\overrightarrow{\boldsymbol{a}}\left(\frac{\pi}{3}\right)$. Point the tail on your answer to (c).

