Math 241 Exam 2 Summer 2002

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

I will put your exam outside my office door by noon on Friday. You may pick it up any time before class on Monday. If I know your e-mail address, I will e-mail your score on Exam 2 to you.

1. Graph and describe the graph of $x y=0$ in 3 -space.
2. Graph and describe the graph of the curve whose position vector is

$$
\overrightarrow{\boldsymbol{r}}(t)=\cos t \overrightarrow{\boldsymbol{i}}+t \overrightarrow{\boldsymbol{j}}+\sin t \overrightarrow{\boldsymbol{k}}
$$

in 3 -space.
3. Find the equations of the line through the points $P=(2,-3,4)$ and $Q=(3,4,6)$. Check your answer.
4. Find the equation of the plane through the points $P=(1,1,2), Q=(2,3,6)$, and $R=(-1,-1,0)$. Check your answer.
5. Find the area of the triangle with vertices $P=(1,2,4), Q=(2,1,2)$, and $R=(2,4,6)$.
6. Find the intersection of the two lines:

$$
\frac{x-8}{3}=\frac{y-7}{4}=\frac{z-6}{1} \quad \text { and } \quad \frac{x-5}{1}=\frac{y-5}{2}=\frac{z-13}{3} .
$$

Check your answer.

7. Consider the curve whose position vector is

$$
\overrightarrow{\boldsymbol{r}}(t)=2 t^{2} \overrightarrow{\boldsymbol{i}}-t^{3} \overrightarrow{\boldsymbol{j}}+\frac{4}{t} \overrightarrow{\boldsymbol{k}}
$$

Find the equation of the line tangent to this curve at $t=1$.
8. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=1 \overrightarrow{\boldsymbol{i}}-2 \overrightarrow{\boldsymbol{j}}+2 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=6 \overrightarrow{\boldsymbol{i}}-7 \overrightarrow{\boldsymbol{j}}+8 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to $\overrightarrow{\boldsymbol{a}}$. (Every number in the answer is an integer. If you have fractions, either you can rid of them or you have made a mistake.)
9. Find the point on $x+2 y+3 z=10$ which is closest to $(1,5,9)$.
10. Find the length of the curve whose position vector is

$$
\overrightarrow{\boldsymbol{r}}(t)=t^{2} \overrightarrow{\boldsymbol{i}}-2 t^{3} \overrightarrow{\boldsymbol{j}}+6 t^{3} \overrightarrow{\boldsymbol{k}},
$$

for $0 \leq t \leq 1$.

