Math 241, Final exam, Summer 2002
PRINT Your Name:
There are 20 problems on 10 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

I will not grade this exam until Friday. Get your course grade from VIP. The grade will be available from VIP as soon as I finish grading the exams.

I will post an answer key on my web site: www.math.sc.edu; click on faculty directory; click on kustin; click on teaching; click on math 241 . The key will be posted shortly after the exam is completed.

1. Let $f(x, y)=x \sin (x y)$. Find $\vec{\nabla} f$.
2. Find the equations of the line through the points $P=(1,-3,4)$ and $Q=(3,4,6)$. Check your answer.
3. Find the equation of the plane through the points $P=(2,1,2), Q=(3,3,6)$, and $R=(0,-1,0)$. Check your answer.
4. Let $f(x, y)=\frac{x^{2}}{x^{2}+2 y^{2}}$. Calculate the limit of $f(x, y)$ as $(x, y) \rightarrow(0,0)$ along $y=3 x$.
5. Identify all local extreme points and all saddle points of $f(x, y)=x^{2} y-6 y^{2}-3 x^{2}$.
6. Find the intersection of the two lines:

$$
\frac{x-5}{2}=\frac{y-3}{1}=\frac{z}{-1} \quad \text { and } \quad \frac{x+8}{3}=\frac{y+5}{2}=\frac{z+1}{1} .
$$

Check your answer.

7. The temperature of a plate at the point (x, y) is $T(x, y)=20-2 x^{2}-y^{2}$.
(a) Draw and label the level sets $T=-7, T=0, T=10$, and $T=20$
(b) A heat seeking particle always moves in the direction of the greatest increase in temperature. Place such a particle on your answer to (a) at the point $(3,3)$. Draw the path of the particle.
(c) Find the equation which gives the path of the particle of part (b).
8. The position of a moving particle at time t is given by the position vector

$$
\overrightarrow{\boldsymbol{r}}(t)=3 \sin t \overrightarrow{\boldsymbol{i}}+4 \cos t \overrightarrow{\boldsymbol{j}}
$$

(a) Graph the path of the object.
(b) Eliminate the parameter and express the path of the object in cartesian coordinates.
(c) Which point on the curve corresponds to $t=\frac{\pi}{4}$?
(d) Draw $\overrightarrow{\boldsymbol{v}}\left(\frac{\pi}{4}\right)$. Put the tail on your answer to (c).
(e) Draw $\overrightarrow{\boldsymbol{a}}\left(\frac{\pi}{4}\right)$. Put the tail on your answer to (c).
9. Compute the directional derivative $D_{\overrightarrow{\boldsymbol{u}}} f$ at the point $(3,2)$ in the direction of the unit vector $\overrightarrow{\boldsymbol{u}}=\frac{5}{13} \overrightarrow{\boldsymbol{i}}+\frac{12}{13} \overrightarrow{\boldsymbol{j}}$ for $f(x, y)=3 x^{2} y^{4}$.
10. Where does the line normal to $x^{2}+2 y^{2}+3 z^{2}=9$ at $(2,1,-1)$ intersect $2 x+y-z+3=0$?
11. Compute $\iint_{R}\left(x^{2}+2 y\right) d A$, where R is the region between $y=x^{2}$ and $y=\sqrt{x}$.
12. Find the volume of the solid which is between $z=16-x^{2}-y^{2}$ and the $x y$-plane.
13. Compute $\iint_{R} x^{2} d A$, where R is the region between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
14. Compute $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} x^{2} d x d y$.
15. Compute $\int_{C}(x+y+z) d x+x d y-y z d z$, where C is the line segment from $(1,2,1)$ to $(2,1,0)$.
16. Let $\overrightarrow{\boldsymbol{a}}=1 \overrightarrow{\boldsymbol{i}}+2 \vec{j}+3 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=4 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}+10 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to $\overrightarrow{\boldsymbol{a}}$. (Every number in the answer is an integer. If you have fractions, either you can rid of them or you have made a mistake.) Check your answer.
17. Graph and name $x^{2}+y^{2}-z^{2}=1$ in 3 -space.
18. Graph and describe the graph of $y z=0$ in 3 -space.
19. Find the equation of the line tangent to the curve parameterized by $\overrightarrow{\boldsymbol{r}}(t)=3 t^{2} \overrightarrow{\boldsymbol{i}}+t^{3} \overrightarrow{\boldsymbol{j}}$ at $t=2$.
20. Find the equation of the plane tangent to $z=x^{2}+y^{2}$ at the point where $x=3$ and $y=4$.

