Math 241, Spring 1998, final

PRINT Your Name:
There are 15 problems on 6 pages. Each problem is worth 10 points. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS! CHECK your answer, whenever possible.

1. Find the equations of the line which contains the points $(4,2,-3)$ and $(4,-3,0)$.
2. Find the equation of the plane which contains the points $(4,2,-3),(4,-3,0)$, and $(2,3,4)$.
3. Let $\overrightarrow{\boldsymbol{a}}=4 \overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=2 \overrightarrow{\boldsymbol{i}}-\overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to $\overrightarrow{\boldsymbol{a}}$.
4. Find the area inside $r=4 \sin \theta$.
5. Find the volume of the solid which is bounded by $z=x^{2}+y^{2}$ and $z=\sqrt{1-x^{2}-y^{2}}$.
6. Describe and graph $\overrightarrow{\boldsymbol{r}}(t)=t \overrightarrow{\boldsymbol{i}}+\sin t \overrightarrow{\boldsymbol{j}}+\cos t \overrightarrow{\boldsymbol{k}}$.
7. Describe and graph $z=x^{2}-y^{2}$.
8. Find the equations of the line tangent to $\overrightarrow{\boldsymbol{r}}(t)=e^{2} t \overrightarrow{\boldsymbol{i}}+t \overrightarrow{\boldsymbol{j}}-\sqrt{4 t^{2}-1} \overrightarrow{\boldsymbol{k}}$ at $t=1$.
9. Find the equation of the plane tangent to $z=2 x^{2}+y^{2}$ at the point where $x=3$ and $y=2$.
10. Compute $\int_{C}(12 x y) d x+\left(6 x^{2}-7 e^{y}+2 y\right) d y$ where C consists of three line segments. The first line segment for C starts at $(1,2)$ and goes to $(8,75)$; the second segment is from $(8,75)$ to $(198,706)$; and the third segment is from $(198,706)$ to $(3,4)$.
11. Find the volume of the solid bounded by $z=18-x^{2}-y^{2}$ and $z=x^{2}+y^{2}-18$.
12. Identify all local extreme points and all saddle points of $f(x, y)=x^{2} y-6 y^{2}-3 x^{2}$.
13. Find the global extreme points of $f(x, y)=3 x+4 y$, which is defined on $S=\{(x, y) \mid 0 \leq x \leq 1,-1 \leq y \leq 1\}$.
14. Where does $\frac{x-1}{2}=\frac{y-2}{-1}, z=3$ intersect $4 x+3 y+2 z=6$?
15. If the temperature of a plate at the point (x, y) is $T(x, y)=10+2 x^{2}-y^{2}$, then find the path a heat-seeking particle (which always moves in the direction of greatest increase of temperature) would follow if it starts at $(4,2)$.
