1. Find the maximum of \(f(x, y) = xy \) on \(x^2 + y^2 = 1 \).

2. Find the absolute extreme points of \(f(x, y) = x^2 + y^2 \) on
\[\{(x, y) | -1 \leq x \leq 3, -1 \leq y \leq 4\} \]

3. Find the volume of the solid which is bounded by \(z = 9 - x^2 - y^2 \) and \(z = 0 \).

4. Find the area inside \(r = 4 \sin \theta \) and outside \(r = 2 \).

5. Find the volume of the solid which is bounded by \(x = 0 \), \(y = 0 \), \(z = 0 \), and \(x + 2y + 3z = 6 \).

6. Find the volume of the solid which is bounded by \(z = \sqrt{9 - x^2 - y^2} \) and \(z = \sqrt{x^2 + y^2} \).

7. Find the volume of the intersection of \(x^2 + y^2 + (z - 6)^2 \leq 16 \) and \(x^2 + y^2 + z^2 \leq 16 \).