Math 241, Spring 1998, exam 3

PRINT Your Name: \qquad
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer, whenever possible.

1. Let $f(x, y, z)=x z \ln (x+y+z)$. Find $\vec{\nabla} f$.
2. Find the equation of the plane tangent to $z=x^{2}+y^{2}$ at $(1,1,2)$.
3. Suppose that $z=f(x, y)$, and x and y are writen polar coordinates (that is, $x=r \cos \theta$ and $y=r \sin \theta)$. Express $\frac{\partial z}{\partial \theta}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
4. Find the directional derivative of $f(x, y, z)=x y+z^{2}$ at $(1,1,1)$ in the direction toward $(5,-3,3)$.
5. Let $f(x, y)=\frac{x y^{2}}{3 x^{2}+2 y^{4}}$.
(a) Calculate the limit of $f(x, y)$ as $(x, y) \rightarrow(0,0)$ along every straight line of the form $y=m x$.
(b) Calculate the limit of $f(x, y)$ as $(x, y) \rightarrow(0,0)$ along the parabola $x=y^{2}$. (c) What is $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?
6. Identify all local extreme points and all saddle points of $f(x, y)=x^{3}+y^{3}-6 x y$.
7. Graph $z=9-y^{2}-x^{2}$ in $3-$ space.
8. Graph and label the level sets $f=0, f=10$, and $f=20$ for $f(x, y)=2 x^{2}-y^{2}+10$.
9. Graph $y^{2}-\frac{x^{2}}{4}-\frac{z^{2}}{9}=1$ in $3-$ space.
10. Find the absolute extreme points of $f(x, y)=x^{2}-6 x+y^{2}-8 y+7$ on $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
