1. Let $f(x, y, z) = xz \ln(x + y + z)$. Find ∇f.

2. Find the equation of the plane tangent to $z = x^2 + y^2$ at $(1, 1, 2)$.

3. Suppose that $z = f(x, y)$, and x and y are written polar coordinates (that is, $x = r \cos \theta$ and $y = r \sin \theta$). Express $\frac{\partial z}{\partial \theta}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

4. Find the directional derivative of $f(x, y, z) = xy + z^2$ at $(1, 1, 1)$ in the direction toward $(5, -3, 3)$.

5. Let $f(x, y) = \frac{xy^2}{3x^2 + 2y^4}$.
 (a) Calculate the limit of $f(x, y)$ as $(x, y) \to (0, 0)$ along every straight line of the form $y = mx$.
 (b) Calculate the limit of $f(x, y)$ as $(x, y) \to (0, 0)$ along the parabola $x = y^2$.
 (c) What is $\lim_{(x, y) \to (0, 0)} f(x, y)$?

6. Identify all local extreme points and all saddle points of $f(x, y) = x^3 + y^3 - 6xy$.

7. Graph $z = 9 - y^2 - x^2$ in 3-space.

8. Graph and label the level sets $f = 0$, $f = 10$, and $f = 20$ for $f(x, y) = 2x^2 - y^2 + 10$.

9. Graph $y^2 - \frac{x^2}{4} - \frac{z^2}{9} = 1$ in 3-space.

10. Find the absolute extreme points of $f(x, y) = x^2 - 6x + y^2 - 8y + 7$ on $\{(x, y) \mid x^2 + y^2 \leq 1\}$.