7. The picture shows the isothermal curves which correspond to the temperature function $T(x, y)$.

(a) A heat seeking particle starts at the point A. Draw the path of this particle. (The particle always moves in the direction of the greatest increase in temperature.)
(b) A heat seeking particle starts at the point B. Draw the path of this particle.
(c) A heat seeking particle starts at the point C. Draw the path of this particle.
8. The temperature of a plate at the point (x, y) is $T(x, y)=100+x^{2}-y^{2}$. Find the path that a heat seeking particle would travel if it starts at the point $(5, \sqrt{75})$. (The particle always moves in the direction of the greatest increase in temperature.)
9. Sketch and name $x^{2}-y^{2}+z^{2}=1$ in 3 - space.
