PRINT Your Name: \qquad
There are 8 problems on 4 pages. Problems 1-4 are worth 13 points each. Each of the other problems is worth 12 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. Graph and describe the graph of $x^{2}+y^{2}+z^{2}=1$ in $3-$ space.
2. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equations of the line through ($1,4,7$) and ($2,5,11$).
3. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through $(1,1,2),(3,1,1)$, and $(2,2,2)$.
4. Find the equations of the line which contains $(2,5,4)$ and is perpendicular to $3 x+7 y+4 z=8$.
5. What are the equations of the line tangent to the curve parameterized by $\vec{r}(t)=3 t^{3} \vec{i}+2 t^{2} \vec{j}+4 t^{5} \overrightarrow{\boldsymbol{k}}$ at $t=-1 ?$
6. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=-\vec{i}+2 \vec{j}+3 \vec{k}$ and $\overrightarrow{\boldsymbol{b}}=-3 \vec{i}+5 \vec{j}+5 \vec{k}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to \vec{a}.
7. Find the equation of the plane which contains the point $(2,1,3)$ and the line

$$
\left\{\begin{array}{l}
x=1+t \\
y=-1+8 t \\
z=3-2 t
\end{array}\right.
$$

CHECK YOUR ANSWER!

8. Find the length of the curve parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\cos t \vec{i}+\sin t \vec{j}+t^{\frac{3}{2}} \overrightarrow{\boldsymbol{k}}$, for $0 \leq t \leq \frac{20}{3}$.
