Math 241, Spring 2001, Exam 1

PRINT Your Name: \qquad
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. Graph and describe the graph of $x z=0$ in 3 - space.
2. Graph and describe the graph of $x^{2}+z^{2}=0$ in 3 - space.
3. Graph and describe the graph of $x^{2}+z^{2}=1$ in $3-$ space.
4. Find the angle between $\overrightarrow{\boldsymbol{u}}=3 \overrightarrow{\boldsymbol{i}}-2 \vec{j}+\vec{k}$ and $\overrightarrow{\boldsymbol{v}}=2 \vec{i}+\vec{j}-\vec{k}$.
5. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=4 \overrightarrow{\boldsymbol{i}}+6 \vec{j}+4 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to \vec{a}.
6. Find the equation of the plane which contains the point $(2,3,1)$ and is perpendicular to the vector $\vec{N}=2 \vec{i}-3 \vec{j}+2 \vec{k}$.
7. Find the point on $(x-1)^{2}+(y-3)^{2}+(z+1)^{2}=14$ which is closest to $x+2 y+3 z=30$.
8. Find the equation of the sphere whose center is $(2,4,5)$ and which is tangent to the $x y$-plane.
9. Find the work done by the force $\overrightarrow{\boldsymbol{F}}=3 \overrightarrow{\boldsymbol{i}}-6 \overrightarrow{\boldsymbol{j}}+7 \overrightarrow{\boldsymbol{k}}$ as it moves an object in a straight line from $(2,1,3)$ to $(9,4,6)$. Force is measured in pounds. Distance is measured in feet.
10. The vectors $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ live in the $x y$-plane. The vector $\overrightarrow{\boldsymbol{v}}$ has a magnitude of 60 and points in the direction $\frac{\pi}{12}$ radians. The vector $\overrightarrow{\boldsymbol{w}}$ has a magnitude of 80 and points in the direction $\frac{4 \pi}{7}$ radians. How long is $\overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{w}}$? (Angles are measured counterclockwise starting at the positive x-axis. You may leave " \cos " and/or "sin" in your answer.)
