Math 241, Final Exam, Spring, 2019

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 100 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

No Calculators, Cell phones, computers, notes, etc.
(1) Let $f(x, y)=x \sqrt{x \cos y+3 x^{2}}$. Find $\frac{\partial f}{d x}$.
(2) Find the maximum and minimum values of $f(x, y)=8 x^{2}-2 y$ subject to the constraint $x^{2}+y^{2}=1$.
(3) Find the equation of the plane tangent to $z=2 x^{2}+3 y^{2}$ at the point where $x=1$ and $y=2$.
(4) Find the directional derivative of the function $f(x, y)=2 x^{2}+3 y^{2}$ in the direction of $\overrightarrow{\boldsymbol{v}}=5 \overrightarrow{\boldsymbol{i}}+3 \overrightarrow{\boldsymbol{j}}$ at the point where $x=1$ and $y=2$.
(5) Find and identify local extreme points and the saddle points of $f(x, y)=2 x^{3}+9 x y^{2}+15 x^{2}+27 y^{2}$.
(6) Find the equation of the plane that contains the points $(0,1,2),(1,1,0)$, and ($3,0,1$).
(7) Find the length of the graph for $y=x^{3 / 2}$ on the closed interval $1 \leq x \leq 4$.
(8) Find the work done by the force $\overrightarrow{\boldsymbol{F}}(t)=2 y \overrightarrow{\boldsymbol{i}}+(2 x+z) \overrightarrow{\boldsymbol{j}}+(y+2 z) \overrightarrow{\boldsymbol{k}}$ as it moves an object along the curve parameterized by the position vector $\vec{r}(t)=2 \cos t \overrightarrow{\boldsymbol{i}}+2 \sin t \overrightarrow{\boldsymbol{j}}+t \overrightarrow{\boldsymbol{k}}$ from $t=0$ to $t=2 \pi$.
(9) Find the volume of the region below $x^{2}+y^{2}+z^{2}=1$ and above $z=\sqrt{x^{2}+y^{2}}$.
(10) Find the area of the region in the $x y$-plane which is bounded by $x+y=2$ and $x+4=y^{2}$.

