Math 241, Final Exam, Fall 2019

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 100 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.
No Calculators, Cell phones, computers, notes, etc.
(1) An object moves along a curve in the $x y$-plane. At time zero, the object is at the origin and has velocity $4 \vec{i}+\vec{j}$. The acceleration of the object at time t is $4 e^{2 t} \overrightarrow{\boldsymbol{i}}+\frac{3}{\sqrt{t}} \overrightarrow{\boldsymbol{j}}$. What is the position vector of the object at time t ?
(2) What are the equations of the line tangent to the curve $\overrightarrow{\boldsymbol{r}}(t)=t^{2} \overrightarrow{\boldsymbol{i}}+2 t^{3} \overrightarrow{\boldsymbol{j}}+3 t^{4} \overrightarrow{\boldsymbol{k}}$ at $t=1$?
(3) An object moves along the curve $\overrightarrow{\boldsymbol{r}}(t)=t \overrightarrow{\boldsymbol{i}}+\frac{2}{3} t^{3 / 2} \overrightarrow{\boldsymbol{j}}$ from $t=1$ to $t=2$. How far did the object travel?
(4) Write $3 x^{2}-24 x+2 y^{2}+20 y+92=0$ in the form

$$
\frac{(x-h)^{2}}{a}+\frac{(y-k)^{2}}{b}=1
$$

for numbers h, k, a, b. (Please make sure that your answer is correct.)
(5) Find the equation of the plane that contains the points $(1,2,3),(2,-1,3)$ and ($3,2,0$). (Please make sure that your answer is correct.)
(6) Find all local extreme points and all saddle points of $f(x, y)=4+x^{3}+y^{3}-3 x y$
(7) Find the absolute maximum and the absolute minimum of the function $f(x, y)=x^{2}+x y+y^{2}-3 x+3 y$ on the triangular region bounded by the x-axis, the y-axis, and $x+y=4$.
(8) Find the area of the region bounded by $y=x^{2}$ and $y=x+2$.
(9) Compute $\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e^{\sqrt{x^{2}+y^{2}}} d x d y$.
(10) Find the volume of the solid whose top is $x^{2}+y^{2}+z^{2}=1$ and whose bottom is the top part of $3 z^{2}=x^{2}+y^{2}$.

