Math 241, Final Exam , Fall, 2018

Write everything on the blank paper provided. YOU SHOULD KEEP THIS PIECE OF PAPER. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 100 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.
No Calculators, Cell phones, computers, notes, etc.
(1) Find the equation of the plane that contains the points $(-1,2,2),(1,1,1)$, and $(2,1,3)$. Please make sure that your answer is correct.
(2) The position vector of an object at time t is $\vec{r}(t)=t \overrightarrow{\boldsymbol{i}}+t^{2} \overrightarrow{\boldsymbol{j}}+t^{3} \overrightarrow{\boldsymbol{k}}$. Find the equations of the line that is tangent to the path of this object at time $t=2$.
(3) Find the equations of the plane tangent to $z=x^{2}+y^{2}$ when $(x, y)=(1,2)$.
(4) Let $f(x, y)=2 x^{2} y^{3}, P=(1,2), \vec{v}=3 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}$. Find the directional derivative of f at the point P in the direction of \vec{v}.
(5) The position vector of an object at time t is given by

$$
\vec{r}(t)=-\sin (t) \vec{i}+\cos (t) \vec{j}
$$

(i) Eliminate the parameter and give the path of the object as an equation that involves only x and y.
(ii) Graph the path of the object.
(iii) Calculate $\vec{r}^{\prime}(\pi / 2)$ and draw $\vec{r}^{\prime}(\pi / 2)$ with the tail of this velocity vector sitting on the position of the object at time $\pi / 2$.
(iv) Calculate $\vec{r}^{\prime \prime}(\pi / 2)$ and draw $\vec{r}^{\prime \prime}(\pi / 2)$ with the tail of this acceleration vector sitting on the position of the object at time $\pi / 2$.
(6) Find the absolute maximum and minimum values of

$$
f(x, y)=2+2 x+4 y-x^{2}-y^{2}
$$

on the triangular region in the first quadrant bounded by the lines $x=0$, $y=0$, and $y=9-x$.
(7) Find all local maxima, local minima, and saddle points of

$$
f(x, y)=y^{2}+x y+3 y+2 x+3
$$

PLEASE TURN OVER.

(8) Find the integral of $f(x, y)=x^{2}+y^{2}$ over the region bounded by

$$
y+1-x=0 \quad \text { and } \quad y^{2}-1-x=0 .
$$

(9) Compute $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} e^{x^{2}+y^{2}} d x d y$.
(10) Find the volume of the region below $x^{2}+y^{2}+z^{2}=1$ and above $z=\sqrt{x^{2}+y^{2}}$.

