Math 241, Final Exam, Fall, 2018

Write everything on the blank paper provided. **YOU SHOULD KEEP THIS PIECE OF PAPER.** If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 100 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please \boxed{CIRCLE} your answer. Please **CHECK** your answer whenever possible.

No Calculators, Cell phones, computers, notes, etc.

- (1) Find the equation of the plane that contains the points (-1, 2, 2), (1, 1, 1), and (2, 1, 3). Please make sure that your answer is correct.
- (2) The position vector of an object at time t is $\vec{r}(t) = t\vec{i} + t^2\vec{j} + t^3\vec{k}$. Find the equations of the line that is tangent to the path of this object at time t = 2.
- (3) Find the equations of the plane tangent to $z = x^2 + y^2$ when (x, y) = (1, 2).
- (4) Let $f(x,y) = 2x^2y^3$, P = (1,2), $\overrightarrow{v} = 3\overrightarrow{i} + 4\overrightarrow{j}$. Find the directional derivative of f at the point P in the direction of \overrightarrow{v} .
- (5) The position vector of an object at time t is given by

$$\overrightarrow{\boldsymbol{r}}(t) = -\sin(t)\overrightarrow{\boldsymbol{i}} + \cos(t)\overrightarrow{\boldsymbol{j}}.$$

- (i) Eliminate the parameter and give the path of the object as an equation that involves only *x* and *y*.
- (ii) Graph the path of the object.
- (iii) Calculate $\overrightarrow{r}'(\pi/2)$ and draw $\overrightarrow{r}'(\pi/2)$ with the tail of this velocity vector sitting on the position of the object at time $\pi/2$.
- (iv) Calculate $\vec{r}''(\pi/2)$ and draw $\vec{r}''(\pi/2)$ with the tail of this acceleration vector sitting on the position of the object at time $\pi/2$.
- (6) Find the absolute maximum and minimum values of

$$f(x,y) = 2 + 2x + 4y - x^2 - y^2$$

on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, and y = 9 - x.

(7) Find all local maxima, local minima, and saddle points of

$$f(x,y) = y^2 + xy + 3y + 2x + 3.$$

PLEASE TURN OVER.

(8) Find the integral of $f(x, y) = x^2 + y^2$ over the region bounded by

y + 1 - x = 0 and $y^2 - 1 - x = 0$.

- (9) Compute $\int_0^1 \int_0^{\sqrt{1-y^2}} e^{x^2+y^2} dx dy$.
- (10) Find the volume of the region below $x^2 + y^2 + z^2 = 1$ and above $z = \sqrt{x^2 + y^2}$.