Write everything on the blank paper provided. PLEASE RETURN this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 100 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

No Calculators, Cell phones, computers, notes, etc.
(1) Find the the absolute maximum and the absolute minimum values of

$$
f(x, y)=x^{3}-x y+y^{2}-x
$$

on the region where $0 \leq x, 0 \leq y$, and $x+y \leq 2$.
(2) Find the equation of the plane through the points $(2,1,-1),(0,-2,0)$, and $(1,-1,2)$.
(3) Find the point on the plane $3 x+4 y+z=1$ that is closest to $(1,0,1)$.
(4) Find parametric equations for the line of intersection of the planes $x+y-z=1$ and $3 x+2 y-z=0$.
(5) Consider the set of points in 3 -space which satisfy both of the following equations $x^{2}+y^{2}+z^{2}=25$ and $x^{2}+y^{2}=1$. What is this set of points called? Describe the set of points. Draw the set of points.
(6) An object is moving in 3 -space. Let $\overrightarrow{\boldsymbol{r}}(t)=x(t) \overrightarrow{\boldsymbol{i}}+y(t) \overrightarrow{\boldsymbol{j}}+z(t) \overrightarrow{\boldsymbol{k}}$ be the position vector of the object at time t. Suppose that $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=t \overrightarrow{\boldsymbol{i}}+t^{2} \overrightarrow{\boldsymbol{j}}+t^{3} \overrightarrow{\boldsymbol{k}}$, $\vec{r}^{\prime}(0)=\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$, and $\overrightarrow{\boldsymbol{r}}(0)=-\overrightarrow{\boldsymbol{j}}+2 \overrightarrow{\boldsymbol{k}}$. Where is the object at time $t=1$?
(7) Find the equation of the plane tangent to $z=x^{2}+y^{2}$ at the point where $x=1$ and $y=3$.
(8) Compute $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x$.
(9) Find the volume of the solid in the first octant bounded by the coordinate planes, the plane $x=3$, and the parabolic cylinder $z=4-y^{2}$.
(10) Evaluate $\int_{C} x y d x+(x+y) d y$ along the curve $y=x^{2}$ from $(-1,1)$ to $(2,4)$.

