1. Let $R = \{(x, y) \mid 1 \le x \le 4, \ 0 \le y \le 2\}$, and let

$$f(x,y) = \begin{cases} 2 & \text{if } 1 \le x < 3, \ 0 \le y \le 2\\ 3 & \text{if } 3 \le x \le 4, \ 0 \le y \le 2. \end{cases}$$

Find
$$\int \int_{R} f(x, y) dA$$
.
2. Find $\int_{0}^{\pi/2} \int_{0}^{1} x \sin(xy) dy dx$.

- 3. Find $\int_{0}^{\ln 3} \int_{0}^{1} xy e^{xy^2} dy dx$.
- 4. Find the volume of the solid in the first octant bounded by $9z = 36 9x^2 4y^2$ and the coordinate planes.

5. Let
$$R = \{(x, y) \mid 1 \le x^2 + y^2 \le 4\}$$
. Find $\iint_R x^2 dA$.

6. Find
$$\iint_R e^{x^2 + y^2} dA$$
, where *R* is the region enclosed by $x^2 + y^2 = 4$
$$\int_R \frac{1}{\sqrt{1 - x^2}} dA$$

7. Find
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} (4-x^2-y^2)^{-1/2} dy dx$$
.

- 8. Find the volume of the solid in the first octant bounded by $y = 2x^2$ and y + 4z = 8.
- 9. Find the volume of the solid bounded by the xy plane and $z = 9 x^2 y^2$.
- 10. Find the volume of the solid whose lower bound is $x^2 + y^2 = z$ and whose upper bound is $x^2 + y^2 + z^2 = 12$.