Math 241, Fall 1999, exam 4

1. Let $R=\{(x, y) \mid 1 \leq x \leq 4,0 \leq y \leq 2\}$, and let

$$
f(x, y)= \begin{cases}2 & \text { if } 1 \leq x<3,0 \leq y \leq 2 \\ 3 & \text { if } 3 \leq x \leq 4,0 \leq y \leq 2\end{cases}
$$

Find $\iint_{R} f(x, y) d A$.
2. Find $\int_{0}^{\pi / 2} \int_{0}^{1} x \sin (x y) d y d x$.
3. Find $\int_{0}^{\ln 3} \int_{0}^{1} x y e^{x y^{2}} d y d x$.
4. Find the volume of the solid in the first octant bounded by $9 z=36-9 x^{2}-4 y^{2}$ and the coordinate planes.
5. Let $R=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4\right\}$. Find $\iint_{R} x^{2} d A$.
6. Find $\iint_{R} e^{x^{2}+y^{2}} d A$, where R is the region enclosed by $x^{2}+y^{2}=4$.
7. Find $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(4-x^{2}-y^{2}\right)^{-1 / 2} d y d x$.
8. Find the volume of the solid in the first octant bounded by $y=2 x^{2}$ and $y+4 z=8$.
9. Find the volume of the solid bounded by the $x y$ plane and $z=9-x^{2}-y^{2}$.
10. Find the volume of the solid whose lower bound is $x^{2}+y^{2}=z$ and whose upper bound is $x^{2}+y^{2}+z^{2}=12$.

