5. A boy's toy boat slips from his grasp at the edge of a straight river. The stream carries it along at 5 feet per seconds. A crosswind blows it toward the opposite shore at 4 feet per second. If the boy runs along the shore at 3 feet per second following his boat, how fast is the boat moving away from him when $t=3$ seconds.
6. Find all local maximum points, all local minimum points, and all saddle points of $f(x, y)=2 x^{4}-x^{2}+3 y^{2}$.
7.

(a) Compute $\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along the } y \text {-axis }}} \frac{x-y}{x+y}$.
(b) Compute $\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along the line } y=x}} \frac{x-y}{x+y}$.
(c) Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$.
8. Graph and label the level sets of $f(x, y)=10-x^{2}+y^{2}$ which correspond to $f=0, f=10$, and $f=20$.
9. Find the equations of the line tangent to the curve parameterized by $\overrightarrow{\boldsymbol{r}}(t)=t^{2} \overrightarrow{\boldsymbol{i}}+3 t \overrightarrow{\boldsymbol{j}}+6 t^{2} \overrightarrow{\boldsymbol{k}}$ at the point $(4,6,24)$.
10. The temperature of a plate at the point (x, y) is $T(x, y)=20-2 x^{2}-y^{2}$. Find the path that a heat seeking particle would travel if it starts at the point $(1,2)$. (The particle always moves in the direction of the greatest increase in temperature.)

