Math 241, Fall 1999, exam 3

1. The picture shows the contour map for a hill 70 feet high, which we assume has the equation z = f(x, y).

- (a) A raindrop landing on the hill at point A will reach the xy-plane at A', by following the path of steepest descent from A. Draw the path from A to A'.
- (b) What are the coordinates of the point A'?
- (c) Estimate f_x at the point B.
- (d) Estimate f_y at the point B.

(e) Estimate $D_{\overrightarrow{u}}f$ at the point C, where $\overrightarrow{u} = \frac{\overrightarrow{i} + \overrightarrow{j}}{\sqrt{2}}$.

- 2. Let $f(x,y) = x \ln(x^2 + y^2)$. Find $\overrightarrow{\nabla} f(1,2)$.
- 3. Find the directional derivative of $f(x,y) = y^2 \ln x$ at the point (1,2) in the direction of $\overrightarrow{a} = \overrightarrow{i} \overrightarrow{j}$.
- 4. Find the equation of the plane tangent to the surface $z = x^3y + 3xy^2$ at the point where x = 2 and y = -2.