Math 241, Fall 1999, exam 3

1. The picture shows the contour map for a hill 70 feet high, which we assume has the equation $z=f(x, y)$.

(a) A raindrop landing on the hill at point A will reach the $x y$-plane at A^{\prime}, by following the path of steepest descent from A. Draw the path from A to A^{\prime}.
(b) What are the coordinates of the point A^{\prime} ?
(c) Estimate f_{x} at the point B.
(d) Estimate f_{y} at the point B.
(e) Estimate $D_{\vec{u}} f$ at the point C, where $\overrightarrow{\boldsymbol{u}}=\frac{\vec{i}+\vec{j}}{\sqrt{2}}$.
2. Let $f(x, y)=x \ln \left(x^{2}+y^{2}\right)$. Find $\vec{\nabla} f(1,2)$.
3. Find the directional derivative of $f(x, y)=y^{2} \ln x$ at the point $(1,2)$ in the direction of $\vec{a}=\vec{i}-\vec{j}$.
4. Find the equation of the plane tangent to the surface $z=x^{3} y+3 x y^{2}$ at the point where $x=2$ and $y=-2$.
