1. The picture shows the contour map for a hill 70 feet high, which we assume has the equation \(z = f(x, y) \).

 (a) A raindrop landing on the hill at point \(A \) will reach the \(xy \)-plane at \(A' \), by following the path of steepest descent from \(A \). Draw the path from \(A \) to \(A' \).

 (b) What are the coordinates of the point \(A' \)?

 (c) Estimate \(f_x \) at the point \(B \).

 (d) Estimate \(f_y \) at the point \(B \).

 (e) Estimate \(D_\vec{u} f \) at the point \(C \), where \(\vec{u} = \frac{i + j}{\sqrt{2}} \).

2. Let \(f(x, y) = x \ln(x^2 + y^2) \). Find \(\nabla f(1, 2) \).

3. Find the directional derivative of \(f(x, y) = y^2 \ln x \) at the point \((1, 2) \) in the direction of \(\vec{a} = \frac{i}{3} - \frac{j}{3} \).

4. Find the equation of the plane tangent to the surface \(z = x^3 y + 3xy^2 \) at the point where \(x = 2 \) and \(y = -2 \).