Math 241, Fall 1997, exam 4

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer, whenever possible.

1. Find the equations of the line normal to $z=3 x^{2}+6 y^{2}$ when $x=1$ and $y=-1$.
2. Suppose that $w=f(x, y, z)$, and x, y, z are writen spherical coordinates (that is, $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$, and $z=\rho \cos \phi)$. Express $\frac{\partial w}{\partial \phi}$ in terms of $\frac{\partial w}{\partial x} \frac{\partial w}{\partial y}$, and $\frac{\partial w}{\partial z}$.
3. Let $f(x, y)=2 x y^{2}$ and let p be the point $p=(1,3)$. Find the directional derivative of f at the point p in the direction of $\vec{v}=2 \vec{i}+5 \vec{j}$.
4. Identify all local extreme points and all saddle points of $f(x, y)=2 x^{4}-x^{2}+3 y^{2}$.
5. Find the absolute extreme points of $f(x, y)=x^{2}-6 x+y^{2}-8 y+7$ on $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
6. Find the minimum of $f(x, y)=x^{2}+y^{2}$ on $x y=3$.
7. Find $\int_{-1}^{0} \int_{-2}^{2 x} e^{y^{2}} d y d x$.
8. Find the volume of the solid whose base is $z=0$ and whose top is $z=9-x^{2}-y^{2}$.
9. Consider the solid which is bounded by $x+3 y+6 z=12$ and the three coordinate planes. The density of the solid at the point (x, y, z) is x. Find the mass of the solid. Set up the integral, but do NOT compute the integral.
10. The base of a solid is the region in the $x y$ - plane which is bounded by $y=4-x^{2}$ and $y=x^{2}-4$. The top of the solid is given by $z=x+y+10$. Find the volume of the solid. Set up the integral, but do NOT compute the integral.
