There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. \boxed{CIRCLE} your answer. **NO CALCULATORS!** CHECK your answer, whenever possible.

1. Let
$$f(x,y) = e^{xy} \sin x + 2xy^2$$
. Find $\overrightarrow{\nabla} f$.

- 2. Find the equation of the plane tangent to $z^2 = 3x^2 + 6y^2$ at (1, -1, 3).
- 3. Suppose that z = f(x, y), and x and y are writen polar coordinates (that is, $x = r \cos \theta$ and $y = r \sin \theta$). Express $\frac{\partial z}{\partial r}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 4. Let $f(x,y) = 2x^2 + 5y^3$ and let p be the point p = (1,3). Find the directional derivative of f at the point p in the direction of $\overrightarrow{v} = 2\overrightarrow{i} + 5\overrightarrow{j}$.
- 5. Where do the lines

PRINT Your Name:

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{1} = \frac{y}{2} = \frac{z+2}{3}$

intersect?

- 6. The temperature of a plate at the point (x, y) is $T(x, y) = 10 + x^2 3y^2$. Find the path that a heat seeking particle would travel if it starts at the point (1, 3). (The particle always moves in the direction of the greatest increase in temperature.)
- 7. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through (2,2,1), (1,2,3), and (4,4,6).
- 8. Let $f(x,y) = \frac{xy^2}{2x^2 + y^4}$.
 - (a) Calculate the limit of f(x, y) as $(x, y) \to (0, 0)$ along every straight line of the form y = mx.
 - (b) Calculate the limit of f(x, y) as $(x, y) \to (0, 0)$ along the parabola $x = y^2$.
 - (c) What is $\lim_{(x,y)\to(0,0)} f(x,y)$?
- 9. Find the equations of **any** line which **intersects** and is **perpendicular** to $\frac{x-2}{3} = \frac{y-5}{2} = \frac{z-4}{5}$. Be sure to tell me where your line intersects my line.

10. Graph and label the level sets f = 0, f = 1, and f = -1 for $f(x, y) = x^2 - y^2$.