Math 241, Fall 1997, exam 1

- 1. Describe the graph of xz = 0 in 3-space.
- 2. Describe the graph of $x^2 + y^2 = 9$ in 3-space.
- 3. Find the work done by the force $\overrightarrow{F} = 3 \overrightarrow{i} + 4 \overrightarrow{j}$ pounds in moving an object from (1,0) to (6,8), distance is measured in feet.
- 4. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through (1,0,1), (2,2,3), and (3,5,6).
- 5. Let $\overrightarrow{a} = 3 \overrightarrow{i} + 2 \overrightarrow{j}$ and $\overrightarrow{b} = \overrightarrow{i} 2 \overrightarrow{j} + 3 \overrightarrow{k}$. Compute $\overrightarrow{a} \times \overrightarrow{b}$.
- 6. Let $\overrightarrow{a} = 3\overrightarrow{i} + 2\overrightarrow{j}$ and $\overrightarrow{b} = \overrightarrow{i} 2\overrightarrow{j} + 3\overrightarrow{k}$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .
- 7. Find the vector of length 10 which has the same direction as $\overrightarrow{b} = 2 \overrightarrow{i} - 3 \overrightarrow{j} + 3 \overrightarrow{k}$.
- 8. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{a} = -2 \overrightarrow{i} + 3 \overrightarrow{j}$ and $\overrightarrow{b} = 2 \overrightarrow{i} 2 \overrightarrow{j} + 3 \overrightarrow{k}$. Find vectors \overrightarrow{u} and \overrightarrow{v} with $\overrightarrow{b} = \overrightarrow{u} + \overrightarrow{v}$, \overrightarrow{u} parallel to \overrightarrow{a} , and \overrightarrow{v} perpendicular to \overrightarrow{a} .
- 9. Find the distance between 3x + 2y + 3z = 2 and 3x + 2y + 3z = 4.
- 10. Find the point on $(x-2)^2 + (y-3)^2 + (z-3)^2 = 16$ which is closest to 2x + 3y + 4z = 1000.