## Math 241, Fall 1997, exam 1

PRINT Your Name: $\qquad$
There are 10 problems on 4 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer.
NO CALCULATORS!

1. Describe the graph of $x z=0$ in $3-$ space.
2. Describe the graph of $x^{2}+y^{2}=9$ in $3-$ space.
3. Find the work done by the force $\overrightarrow{\boldsymbol{F}}=3 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}$ pounds in moving an object from $(1,0)$ to $(6,8)$, distance is measured in feet.
4. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through $(1,0,1),(2,2,3)$, and $(3,5,6)$.
5. Let $\overrightarrow{\boldsymbol{a}}=3 \overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}$ and $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{i}}-2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Compute $\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}$.
6. Let $\overrightarrow{\boldsymbol{a}}=3 \overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}$ and $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{i}}-2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Find the angle between $\overrightarrow{\boldsymbol{a}}$ and $\vec{b}$.
7. Find the vector of length 10 which has the same direction as $\vec{b}=2 \vec{i}-3 \vec{j}+3 \vec{k}$.
8. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=-2 \overrightarrow{\boldsymbol{i}}+3 \overrightarrow{\boldsymbol{j}}$ and $\overrightarrow{\boldsymbol{b}}=2 \overrightarrow{\boldsymbol{i}}-2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to $\overrightarrow{\boldsymbol{a}}$.
9. Find the distance between $3 x+2 y+3 z=2$ and $3 x+2 y+3 z=4$.
10. Find the point on $(x-2)^{2}+(y-3)^{2}+(z-3)^{2}=16$ which is closest to $2 x+3 y+4 z=1000$.
