18. (14 points) Consider the curve \(\mathbf{r}(t) = -2 \sin t \mathbf{i} + 3 \cos t \mathbf{j} \).

(a) Eliminate the parameter and find an equation for this curve which involves only \(x \) and \(y \).
(b) Sketch the curve.
(c) Which point on the curve corresponds to \(t = \frac{\pi}{4} \).
(d) Graph \(\mathbf{r}'(\frac{\pi}{4}) \). Put the tail of your vector on your answer to (c).
(e) Graph \(\mathbf{r}''(\frac{\pi}{4}) \). Put the tail of your vector on your answer to (c).

\[
\begin{align*}
\begin{cases}
 x &= -2 \sin t \\
 y &= 3 \cos t \\
\end{cases}
\end{align*}
\]

\[
\frac{x^2}{\frac{9}{4}} + \frac{y^2}{2} = 1
\]

At \(\frac{\pi}{4} \), the object is on \(\left(-\sqrt{2}, \frac{3 \sqrt{2}}{2}\right) \).

d) \(\mathbf{r}'(t) = -2 \cos t \mathbf{i} - 3 \sin t \mathbf{j} \)

\[
\mathbf{r}' \left(\frac{\pi}{4} \right) = -\sqrt{2} \mathbf{i} - \frac{3 \sqrt{2}}{2} \mathbf{j}
\]

c) \(\mathbf{r}''(t) = 2 \sin t \mathbf{i} - 3 \cos t \mathbf{j} \)

\[
\mathbf{r}'' \left(\frac{\pi}{4} \right) = \sqrt{2} \mathbf{i} - \frac{3 \sqrt{2}}{2} \mathbf{j}
\]