MATH 241, FALL 2001, FINAL EXAM

PRINT Your Name: \qquad
Get your course grade from TIPS/VIP late on Tuesday or later.
There are 18 problems on 10 pages. The exam is worth a total of 150 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. (8 points) Find the equation of the plane through $(2,1,2),(2,-1,1)$, and $(4,0,0)$. CHECK YOUR ANSWER!
2. (8 points) Find the equations of the line through $(1,2,3)$ and $(4,6,1)$. CHECK YOUR ANSWER!
3. (8 points) If $f(x, y)=x \sin (x y)$, then find $\vec{\nabla} f$.
4. (8 points) Graph and describe the graph of $x z=0$ in $3-$ space.
5. (8 points) Graph and name $x^{2}+z^{2}=y^{2}$ in $3-$ space.
6. (8 points) Graph and describe the graph of the curve $\overrightarrow{\boldsymbol{r}}(t)=\cos t \overrightarrow{\boldsymbol{i}}+t \overrightarrow{\boldsymbol{j}}+\sin t \overrightarrow{\boldsymbol{k}}$ in $3-$ space.
7. (8 points) What are the equations of the line tangent to the curve which is parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\left(2 t+4 t^{2}\right) \overrightarrow{\boldsymbol{i}}+6 t \overrightarrow{\boldsymbol{j}}+2 t^{2} \overrightarrow{\boldsymbol{k}}$ at $(20,12,8)$?
8. (8 points) Find the equation of the plane tangent to the surface $z=3 x^{2}+y^{3}$ at the point where $x=3$ and $y=-1$.
9. (14 points) The temperature of a plate at the point (x, y) is $T(x, y)=x^{2}+4 y^{2}$.
(a) Draw and label the level sets $T=0, T=4, T=36, T=64$.
(b) A heat seeking particle always moves in the direction of the greatest increase in temperature. Place such a particle on your answer to (a) at the point $\left(\sqrt{3}, \frac{1}{2}\right)$. Draw the path of the particle.
(c) Find the equation which gives the path of the particle of part (b).
10. (8 points) Let $\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{i}}+\vec{j}+\overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=5 \overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+2 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to \vec{a}. CHECK YOUR ANSWER!
11. (8 points) Find $\iint_{R} e^{x^{2}+y^{2}} d A$, where R is the region inside $x^{2}+y^{2}=16$.
12. (7 points) Consider the solid which is bounded by $3 x+4 y+2 z=12$ and the three coordinate planes. Find the volume of the solid. Set up the integral, but do NOT compute the integral.
13. (7 points) Find the volume of the region between $z=9-x^{2}-y^{2}$ and the $x y$ plane.
14. (7 points) Consider the triangle with vertices $P=(1,2,3), Q=(0,2,1)$, and $R=(4,2,7)$. Find the angle of this triangle at the vertex Q.
15. (7 points) Find the directional derivative of $f(x, y)=x^{3} \ln y$ at the point $(1,2)$ in the direction of $\overrightarrow{\boldsymbol{u}}=\frac{1}{\sqrt{2}}(\overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}})$.
16. (7 points) Suppose $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\overrightarrow{\boldsymbol{i}}+e^{t} \overrightarrow{\boldsymbol{j}}, \quad \overrightarrow{\boldsymbol{r}}^{\prime}(0)=2 \overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}}$, and $\overrightarrow{\boldsymbol{r}}(0)=$ $\overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}}$. Find $\overrightarrow{\boldsymbol{r}}(t)$.
17. (7 points) Where do the following two lines intersect? CHECK YOUR ANSWER!

$$
\frac{x-4}{1}=\frac{y-2}{-1}=\frac{z-7}{2} \quad \text { and } \quad \frac{x+1}{-1}=\frac{y-10}{2}=\frac{z-6}{1}
$$

18. (14 points) Consider the curve $\overrightarrow{\boldsymbol{r}}(t)=-2 \sin t \overrightarrow{\boldsymbol{i}}+3 \cos t \overrightarrow{\boldsymbol{j}}$.
(a) Eliminate the parameter and find an equation for this curve which involves only x and y.
(b) Sketch the curve.
(c) Which point on the curve corresponds to $t=\frac{\pi}{4}$.
(d) Graph $\overrightarrow{\boldsymbol{r}}^{\prime}\left(\frac{\pi}{4}\right)$. Put the tail of your vector on your answer to (c).
(e) Graph $\vec{r}^{\prime \prime}\left(\frac{\pi}{4}\right)$. Put the tail of your vector on your answer to (c).
