MATH 241, FALL 2001, EXAM 4

PRINT Your Name:
There are 8 problems on 5 pages. Problems 1 through 7 are each worth 10 points. Problem 8 has three parts; each part is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! Check your answer whenever possible. If you want to pick up your exam before Tuesday, write a short note to that effect on the top of this page and I will leave your exam outside my office door, before I go home tonight.

1. If $f(x, y)=x e^{x y}$, then find $\vec{\nabla} f$.
2. Find the directional derivative of $f(x, y)=x^{2} y$ at $(1,2)$ in the direction $\overrightarrow{\boldsymbol{u}}=\frac{3}{5} \vec{i}-\frac{4}{5} \vec{j}$.
3.

(a) Find $\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along } y=3 x}} \frac{x^{3} y}{x^{6}+2 y^{2}}$.
(b) Find $\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along } y=x^{3}}} \frac{x^{3} y}{x^{6}+2 y^{2}}$.
4. Find the slope of the line tangent to the curve of intersection of the surface $36 z=4 x^{2}+9 y^{2}$ and the plane $x=3$ at the point $(3,2,2)$.
5. Find the equation of the plane tangent to $z^{2}=x^{2}+y^{2}$ at $(3,4,5)$.
6. Find the equation of the line perpendicular to $z^{2}=x^{2}+y^{2}$ at $(3,4,5)$.
7. Sand is pouring onto a conical pile in such a way that at a certain instant the height is 80 inches and is increasing at 5 inches per minute and the radius is 50 inches and is increasing at 2 inches per minute. How fast is the volume increasing at that instant? (The volume of a cone is $V=(1 / 3) \pi r^{2} h$.)
8. Each part is worth $\mathbf{1 0}$ points. The temperature of a plate at the point (x, y) is $T(x, y)=x y$.
(a) Draw and label the level sets $T=0, T=1, T=-1, T=2$, and $T=-2$.
(b) A heat seeking particle always moves in the direction of the greatest increase in temperature. Place such a particle on your answer to (a) at the point $(2,-1)$. Draw the path of the particle.
(c) Find the equation which gives the path of the particle of part (b).

