MATH 241, FALL 2001, EXAM 3

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! Check your answer whenever possible. If you want to pick up your exam before Tuesday, write a short note to that effect on the top of this page and I will leave your exam outside my office door, before I go home tonight.

1. Find the equations of the line which contains $P=(1,2,3)$ and $Q=(7,3,2)$. Check your answer.
2. Find the equations of the line tangent to the curve $\overrightarrow{\boldsymbol{r}}(t)=2 t^{2} \overrightarrow{\boldsymbol{i}}+4 t^{3} \overrightarrow{\boldsymbol{j}}+6 t \overrightarrow{\boldsymbol{k}}$ at $t=-1$.
3. Graph and describe the graph of the curve $\overrightarrow{\boldsymbol{r}}(t)=\cos t \overrightarrow{\boldsymbol{i}}+t \overrightarrow{\boldsymbol{j}}+\sin t \overrightarrow{\boldsymbol{k}}$ in 3 - space.
4. Find the length of the curve $\overrightarrow{\boldsymbol{r}}(t)=t^{2} \overrightarrow{\boldsymbol{i}}-2 t^{3} \overrightarrow{\boldsymbol{j}}+6 t^{3} \overrightarrow{\boldsymbol{k}}$ for $0 \leq t \leq 1$.
5. Let $f(x, y)=x^{2}-y^{2}$. Graph and label the level sets which correspond to levels 1,0 , and -1 for this function.
6. Graph and name $z=x^{2}+y^{2}$ in 3 -space.
7. Suppose $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\overrightarrow{\boldsymbol{i}}+e^{-t} \vec{j}, \overrightarrow{\boldsymbol{r}}^{\prime}(0)=2 \overrightarrow{\boldsymbol{i}}+\vec{j}$, and $\overrightarrow{\boldsymbol{r}}(0)=\overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}}$. Find $\overrightarrow{\boldsymbol{r}}(t)$.
8. Consider the curve $\vec{r}(t)=2 \sin t \overrightarrow{\boldsymbol{i}}+3 \cos t \overrightarrow{\boldsymbol{j}}$.
(a) Eliminate the parameter and find an equation for this curve which involves only x and y.
(b) Sketch the curve.
(c) Which point on the curve corresponds to $t=-\frac{\pi}{4}$.
(d) Graph $\vec{r}^{\prime}\left(-\frac{\pi}{4}\right)$. Put the tail of your vector on your answer to (c).
(e) Graph $\vec{r}^{\prime \prime}\left(-\frac{\pi}{4}\right)$. Put the tail of your vector on your answer to (c).
9. Find the point on $3 x-5 y+2 z=37$ which is closest to $(1,2,3)$.
10. Find the point of intersection of the following lines. CHECK YOUR ANSWER!

$$
\frac{x-5}{1}=\frac{y-5}{3}=\frac{z-7}{4} \quad \text { and } \quad \frac{x+3}{2}=\frac{y+10}{3}=\frac{z+4}{1} .
$$

