MATH 241, FALL 2001, EXAM 1

PRINT Your Name:

There are 10 problems on 4 pages. Each problem is worth 10 points. SHOW your work. *CIRCLE* your answer. **NO CALCULATORS!**

- 1. Graph and describe the graph of $x^2 + y^2 + z^2 = 1$ in 3-space.
- 2. Graph and describe the graph of $x^2 + y^2 = 1$ in 3-space.
- 3. Graph and describe the graph of $x^2 + y^2 = 0$ in 3-space.
- 4. Consider the triangle with vertices P = (1, 2, 3), Q = (0, 1, 2), and R = (2, 4, 7). Find the angle of this triangle at the vertex Q.
- 5. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{a} = 2\overrightarrow{i} \overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 4\overrightarrow{i} 13\overrightarrow{j} + 7\overrightarrow{k}$. Find vectors \overrightarrow{u} and \overrightarrow{v} with $\overrightarrow{b} = \overrightarrow{u} + \overrightarrow{v}$, \overrightarrow{u} parallel to \overrightarrow{a} , and \overrightarrow{v} perpendicular to \overrightarrow{a} . (Every number in the answer is an integer. If you have fractions, either you can rid of them or you have made a mistake.)
- 6. Find the equation of the plane which contains the point (1,3,2) and is perpendicular to the vector $\vec{N} = 2\vec{i} 3\vec{j} + 1\vec{k}$.
- 7. Find the point on $(x-4)^2 + (y-7)^2 + (z-8)^2 = 14$ which is closest to x + 2y + 3z = 0.
- 8. Find the equation of the sphere whose center is (3, 5, 4) and which is tangent to the yz-plane.
- 9. Find the work done by the force $\overrightarrow{F} = 2 \overrightarrow{i} 5 \overrightarrow{j} + 6 \overrightarrow{k}$ as it moves an object in a straight line from P = (3, 2, 4) to Q = (9, 4, 6). Force is measured in pounds. Distance is measured in feet.
- 10. Find the distance from the point (4, 5, 6) to the x-axis.