PRINT Your Name: \qquad
Get your course grade from TIPS/VIP late on Tuesday or later.
There are 17 problems on 9 pages. Problems 1, 2, and 7 are each worth 8 points. Each of the other problems is worth 9 points. The exam is worth a total of 150 points. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS!

1. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through $(2,2,3),(2,0,2)$, and $(5,1,1)$.
2. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equations of the line through ($6,4,2$) and $(3,4,7)$.
3. Graph and name $x^{2}-y^{2}=1$ in $2-$ space.
4. Graph and name $\frac{x^{2}}{16}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$ in $3-$ space.
5. What are the equations of the line tangent to the curve which is parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\left(3 t^{3}+2\right) \overrightarrow{\boldsymbol{i}}+6 t^{2} \vec{j}+\left(4 t^{3}+2 t\right) \overrightarrow{\boldsymbol{k}}$ at $t=1$?
6. Find the equation of the plane tangent to the surface $z=x^{2}+3 y^{3}$ at the point where $x=2$ and $y=-2$.
7. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=2 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}+6 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=3 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to $\overrightarrow{\boldsymbol{a}}$.
8. Find the point on $5 x+y+z+17=0$ which is closest to $(1,2,3)$.
9. An ant walks along the curve $\overrightarrow{\boldsymbol{r}}(t)=t \cos t \overrightarrow{\boldsymbol{i}}+t \sin t \overrightarrow{\boldsymbol{j}}+t \overrightarrow{\boldsymbol{k}}$, for $0 \leq t$. Where does the ant touch $x^{2}+y^{2}+z^{2}=1$?
10. Find the length of the curve $\overrightarrow{\boldsymbol{r}}(t)=\frac{t^{3}}{3} \overrightarrow{\boldsymbol{i}}+\frac{t^{2}}{2} \overrightarrow{\boldsymbol{j}}$ for $0 \leq t \leq 1$.
11. Find the directional derivative of $f(x, y)=x^{3} \ln y$ at the point $(1,2)$ in the direction of $\overrightarrow{\boldsymbol{u}}=\frac{1}{\sqrt{2}}(\overrightarrow{\boldsymbol{i}}-\overrightarrow{\boldsymbol{j}})$.
12. Sand is pouring onto a conical pile in such a way that at a certain instant the height is 200 inches and is increasing at 4 inches per minute and the radius is 50 inches and is increasing at 3 inches per minute. How fast is the volume increasing at that instant? (The volume of a cone is $\frac{1}{3} \pi r^{2} h$.)
13. Find all local maximum points, all local minimum points, and all saddle points of $f(x, y)=x^{2} y-6 y^{2}-3 x^{2}$.
