Math 241, Fall 2000, Exam 4

There are 10 problems on 6 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. Find $\int_{0}^{1} \int_{0}^{3 x} x^{2} d y d x$.
2. Find the volume of the solid in the first octant which is bounded by $y=x^{2}$, $x=0, z=0$, and $y+z=1$.
3. Let R be the region $R=\{(x, y) \mid 2 \leq x \leq 8$, and $2 \leq y \leq 6\}$. Let P be the partition of R into six equal squares by the lines $x=4, x=6$, and $y=4$. Approximate $\iint_{R}(12-x-y) d A$ by calculating the corresponding Riemann sum $\sum_{k=1}^{6} f\left(\bar{x}_{k}, \bar{y}_{k}\right) \Delta A_{k}$, where $\left(\bar{x}_{k}, \bar{y}_{k}\right)$ is the center of the $k^{\text {th }}$ box.
4. Identify all local maximum points, all local maximum points, and all saddle points of $f(x, y)=x y^{2}-6 x^{2}-6 x y$.
5. Where does the line normal to $x^{2}+y^{2}+2 z^{2}=6$ at $(1,2,1)$ intersect $2 x+3 y+z=49 ?$
6. Sand is pouring onto a conical pile in such a way that at a certain instant the height is 100 inches and is increasing at 3 inches per minute and the radius is 40 inches and is increasing at 2 inches per minute. How fast is the volume increasing at that instant? (The volume of a cone is $V=(1 / 3) \pi r^{2} h$.)
