PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through $(1,-3,2),(4,5,1)$, and $(-1,2,-3)$.
2. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equations of the line through $(4,7,9)$ and $(1,-2,6)$.
3. Find the equations of the line which contains $(1,3,4)$ and is perpendicular to $2 x-9 y+4 z=8$.
4. Find the equation of the plane which contains $(5,8,9)$ and is perpendicular to $\frac{x-3}{7}=\frac{y-2}{9}=\frac{z-6}{8}$.
5. Find the point of intersection of the following lines. CHECK YOUR ANSWER!

$$
\frac{x+5}{-1}=\frac{y-10}{4}=\frac{z+3}{-1} \quad \text { and } \quad \frac{x}{1}=\frac{y-8}{2}=\frac{z-8}{3}
$$

6. Find the length of the curve parameterized by

$$
\overrightarrow{\boldsymbol{r}}(t)=\sqrt{6} t^{2} \overrightarrow{\boldsymbol{i}}+\frac{2}{3} t^{3} \overrightarrow{\boldsymbol{j}}+6 t \overrightarrow{\boldsymbol{k}} \text { for } 3 \leq t \leq 6
$$

7. What are the equations of the line tangent to the curve parameterized by $\vec{r}(t)=3 t \vec{i}+2 t^{2} \vec{j}+t^{5} \vec{k}$ at $t=-1$?
8. Find the equations of any line which is contained on the plane $x+3 y+3 z=6$.
9. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=1 \overrightarrow{\boldsymbol{i}}+3 \overrightarrow{\boldsymbol{j}}+7 \overrightarrow{\boldsymbol{k}}$. Find vectors $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to \vec{a}.
10. Find the point on $3 x+5 y+2 z=57$ which is closest to $(1,2,3)$.
